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ABSTRACT

The concealment of information passed over a non-secure communication link

lies in the complex field of cryptography. Furthermore, when absolutely no secure

channel exists for the exchange of a secret key with which data is encrypted and de-

crypted, the remedy lies in a branch of cryptography known as public-key cryptosys-

tem (PKS). This thesis provides an in-depth study of the public-key cryptosystem.

Essential background knowledge is covered leading up to a VLSI implementation of

a fast modulo exponentiator based on the sum of residues (SOR) method. Fast mod-

ulo exponentiation is vital in the most popular PKS schemes. Furthermore, since all

cryptosystems make use of some form of mapping functions, a neural network - an

excellent non-linear mapping technique - provides a viable medium upon which a

possible cryptosystem can be based. In examining this possibility, this thesis presents

an adaptation of the back-propagation neural network to a "pseudo" public-key ar-

rangement. Following examinations of the network, a key management system is

then devised. Finally, a complete top-down block diagram of an entire cryptosystem

based on the neural network of this study is proposed.
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I. INTRODUCTION

In the recent past, there possibly was a time when protection of vital electronic

information was not considered a necessity and therefore not deemed to be a topic

of common interest. Such a time is forever behind us. In our time, information is

most often passed across a public telecommunication medium. Whether this medium

be a telephone line or satellite link, there exist eavesdropping methods which are so

sophisticated and efficient that no information is physically secure. How then is one

to revert to the inherent privacy of the past? The answer to this question and thus

the solution to concealment of information lie in the complex science of cryptography.

Cryptography is the field involving the preparation of messages intended to be

incomprehensible to all except those who legitimately possess the means to recover the

original information [Ref 1]. At present, the fastest and most popular cryptosystems

employ some convention of mapping a set of numbers representing data to another

set of numbers (encryption). The recovery of data is done by simply reversing the

mapping process so as to obtain the original content (decryption). Often, this type of

mapping is governed by the notion of a key. In order to provide the essential element

of secrecy, system users must provide this key which is normally a privately or semi-

privately known string of characters or bits. For a cryptosystem to be completely

secure, knowledge of both the mapping function and key is required to recover the

original text from encrypted text.

Of the cryptosystems which use the forementioned concept of a key, two distinct

categories are made: secret-key and public-key.

As suggested by the name, a cryptosystem is secret-key if the key must be

secretly agreed upon prior to any parties being able to communicate through the

1



system. In this arrangement, both parties normally have the same key which is used

in both encryption and decryption. Algorithms implementing this scheme are labeled

symmetric. Intuitively, one recognizes a severe restriction in the secret-key system:

an advance agreement on the key over a secure channel. When such a channel is

not readily available, the topic of this thesis, public-key cryptosystem (PKS), is the

remedy.

Most PKS systems use an asymmetric algorithm whereupon separate keys are

required for encryption and decryption. This scheme allows the passing of keys,

most likely encryption keys, over an unsecure channel without any compromise to

the system's safety. In boasting this versatile capability, however, public-key system

must pay a price, namely a reduction in system speed [Ref 2]. Currently, PKS is much

slower than secret-key, too slow for large quantities of data. For this reason, its use

is often limited to the exchange of keys in secret-key systems. In the future, along

with advancements in technology, perhaps this speed barrier will be lifted yielding

more opportunity for the employment of PKS.

It is in the spirit of this future that this thesis is presented. It is an in-depth

study of the public-key cryptosystem. First, the mathematical basis behind PKS is

covered so as to establish an essential background knowledge in a somewhat esoteric

subject. Second, the capability of VLSI implementation of PKS is explored via a

fast modulo exponentiator, a hardware device required in two of the most popular

public-key systems. A vital component of the fast modulo exponentiator, a modulo

reduction unit, is designed with MAGIC tools [Ref 3], validated with RNL simulation

[Ref 4], and examined for possible use. Finally, to conclude the scope of this research,

a completely novel approach to PKS is proposed: a possible implementation of neural

networks in public-key cryptography.



II. MATHEMATICAL BASIS FOR THE
DEVELOPMENT OF PUBLIC-KEY

CRYPTOSYSTEMS

Compared to the complexity of conventional engineering mathematics, the con-

cepts behind the algorithms for public-key cryptosystem are elementary in nature yet

without complete understanding of them, no initial familiarization to the system is

possible. Due to this realization, this chapter concentrates heavily on the mathemat-

ics of asymmetric cryptography. It provides a basic overview of modulo arithmetic,

fast exponentiation, and discrete logarithm. It also outlines a background knowledge

in artificial neural networks, a branch of engineering upon which a completely new

angle in cryptography is based. Furthermore, the fundamentals of public-key cryp-

tosystems are covered using two well-established examples, the Diffie-Hellman and

RSA systems. Finally, the chapter concludes with the problem of cryptoanalysis: the

purpose of all cryptosystems.

A. MODULO ARITHMETIC

Modulo arithmetic is a branch of integer mathematic best explained by an ex-

ample.

Simply,

21 =3(mod9)

or

21 = 3 + 9 x 2.



This operation is commonly described as 21 divided by 9 equals 2 with remainder

of 3.

When written as x = y(mod z), by convention x is said to be "congruent to y

modulo z." Congruency applies if and only if

x = y + k x z

where k is any integer. Also y is called a residue mod z of x if and only if x =

y(mod z).

Note that -15(mod 6) = -3(mod 6).

Clearly, for any z, y belongs to a complete set of residues {0, 1,2..., z — 1}. From

this complete set of residues, there exists a subset called a reduced set of residues

which has elements relatively prime to the modulus z. For example, a complete set

of residues modulo 12 is {0,1,2,3,4,5,6,7,8,9,10,11}. From this, only {1,5,7,11}

does not have a common factor with 12 (0 excluded); it is therefore a reduced set

[Ref2].

For a modulo prime, clearly the reduced set of residues contains all elements of

the complete set except for 0. Therefore for a prime n, the reduced set of residues

has (n — 1) elements. In addition, generally the reduced set of residues for a product

of two primes m and n has ((m — l)(n — 1)) elements and that for a prime power n r

has (n — l)n(
r~ 1

) elements. Commonly, the number of elements in a reduced set of

residues for modulo n is referred to as the Euler Totient function <f>(n) [Ref 2]. Table

2.1 shows <f>(n) for several n [Ref 2].

Like normal integer arithmetic, addition and multiplication in integer modulo n

abide by the laws of associativity, commutativity and distributivity [Ref 2].

Theorem 1 [Ref 2]:

(a + 6)(mod n) = (a mod n + b mod n) mod n



n Reduced set <f>{n)

n prime

n2 (n prime)

•

n r (n prime)

l,2,...,n-l

[l,2,...,n-l,n + l,

...,2n- l,2n + 1,

...,n
2 -l]

[l,2,..
v
n'-l

...multiples of n < nr
]

n-1
n(n — 1)

(nr - 1) - (nr- J - 1)

= nr- 1 (n-l)

pq{p, q primes)

ULipf'dP* primes)

[l,2,:..,pq-l

...multiples of p

...multiples of q]

(pq-l)-(q-l)-(p-l)
-(p-l)(«-l)

TABLE 2.1: EULER'S TOTIENT FUNCTIONS

Theorem 2 [Ref 2]:

a&(mod n) = (a mod n x 6 mod n) mod n

These two theorems form the basis for the development of fast modulo expo-

nentiation.

B. FAST MODULO EXPONENTIATION

Many public-key cryptosystem requires the computation of x k mod n, with n

and k being extremely large numbers (in excess of 256 bits.) A naive solution would

be to multiply by x a repetition of k — 1 times then taking the modulo of the large

result. At best, this is both cumbersome and inefficient for today's computers due

to finite word length limit. Fortunately, there is an algorithm which avoids this



Iteration(i) k bit square ops xppj_x PPi

1

2

3

4

1

1

5
1 but kbit= so no op

52 xl
(5

2
)

2 but kbit= so no op

((5
2
)

2
)

2 x 52

1 (remains the same)

5
2

52 (remains the same)

5
10

TABLE 2.2: EXAMPLE FAST EXPONENTIATION FOR 5
10

straightforward method: fast modular exponentiation [Ref 5].

Taking advantage of Theorem 2, the exponentiation is faster when performed

by repeated squaring operations coupled with conditional multiplication by the par-

tial product according to the binary representation of the exponent. This is best

explained by an example.

Example:

Suppose we are required to find 5
10 mod 9.

let x — 5; k = 10; m = 9

Using ppo = 1 and

{x2
'" 1

x ppi-i if k{ = 1

ppi-x if Ja =

k in binary is 1010. In accordance to k, bit by bit from least significant bit

(LSB) first, the squaring of x occurs iteratively for every k bit (0 or 1) but the result

is multiplied by the partial product only when k bit is 1. All the while, modulo

operation is performed in each squaring or multiplication in order to maintain a

manageable intermediate result. The partial product is always initialized to 1 (partial

product at iteration step 0, pp = 1). Let's examine Table 2.2 for clarity. From the

result of Table 2.2, indeed we have accomplished 5 10
. D

If we incorporate the modulo operation into each iteration according to Theorem

2, the modulo problem is also solved. Table 2.3 incorporates modulo reduction to



Iteration k bit Square ops Multiply ops PPi

1

2

3

4

1

1

(5
1)mod9 = 5

(5
2)mod9 = 7x

(7
2
) mod 9 = 4

(4
2)mod9 = 7x

1 mod 9

7 mod 9

i(Init)

= 7

= 49

TABLE 2.3: EXAMPLE FAST EXPONENTIATION AND MODULO OF 5
10 mod 9

the previous example.

Example:

5
10 mod 9

Table 2.3 outlines in detail the process until a partial product of 49 is obtained.

Note that the result of the square operation becomes the number to be squared in the

next iteration. Also the previous partial product is the number in the multiplying

operation if the k bit is 1. In this example, since 49 mod 9 = 4, indeed 5
10 mod 9

(which also equals 4) is performed.

In this example the savings in multiplications is 4 (5 versus 9 using the naive

method). For larger number applications, let a be the number of binary bits of the

exponent k and 6 be log2 a. Using fast exponentiation, the number of multiplications

(call it X) is bounded by 6+1 < X < 26+1 depending on the number of l's and

O's in k. X with fast exponentiation grows linearly in length of k and is considerably

smaller then X obtained by the straightforward method of multiplying by k — 1 times

[Ref 5].

Appendix A contains a C program implementing fast modular exponentiation

using the above algorithm. It should be noted that the program is not suitable for

numbers exceeding the capability of the computer. Most computers have 32 bits res-

olution therefore results which are greater than 32 bits are likely to be too large. This

limitation, however, is resolved by using hardware for fast modular exponentiation



as will be shown in Chapter III.

C. DISCRETE LOGARITHM

Discrete logarithm is the branch of mathematics centered on the solution to the

exponent of a powered number; namely, finding x in ax = b mod n when given a, 6, n.

Example:

a = 3; 6 = 4;n = 11;

3
1 mod 11 =3

3
2 mod 11=9

3
3 mod 11=5

3
4 mod 11=4

so x = 4.

Given a large modulus n and a, 6 (greater than 100 digits magnitude), discrete

logarithm is classified as a non-deterministic polynomials problem; the solution to

which is extremely difficult and impractical to derive [ Ref 6]. Therefore its use is

prevalent throughout many public-key cryptosystems.

D. INVERSES

Unlike integer arithmetic, modulo arithmetic often has inverses. Given a 6

{0,n — 1}, there could be a unique b £ {0,n — 1} such that

a6(modn) = 1 [Ref 2]

A systematic method to compute inverses involves the notion of the greatest

common divisor {gcd). Conventionally, gcd(a,b) is an integer c such that a/c and

8



b/c result in the smallest possible integer value. For example, gcd(8, 12) = 4 but

gcd{$, 16) = 8.

From the mathematics of gcd, we pose:

Lemma 1 [Ref 2]: if gcd(a,n) = 1 then

a, mod n ^ aj mod n; < i, j < n

Fermat's Theorem [Ref 2]: p is a prime and gcd(a,p) = 1 then

a{p
'l)(mod p) = 1

Theorem 3 [Ref 2]:if gcd(a,n) = 1 then an a
-1

,0 < a" 1 < n exists such that

aa~ l = l(mod n)

Theorem 4 [Ref 2]: if <7af(a,n) = 1 then

a*
(n) mod n = 1

Recall 4>{n) is the number of elements in a reduced set of residues (Table 2.1).

From the above Theorems, Euclid's algorithm is developed to find gcd(a,n) as

well as inverse a
-1 (mod n) of a mod n. It is not within the scope of this study to

detail the foundation of this algorithm. If further information is preferred, reference

2 is suggested for consultation. For the purpose of this thesis, C programs for gcd

and inverse are provided in Appendix A [Ref 2].

E. ARTIFICIAL NEURAL NETWORK

In 1985, Ackley, Hinton and Sejnowski [Ref 7] applied a back-propagation neural

network to encode orthogonal binary vectors of length N using log2N hidden units.

Following this, Cottrell, Munro and Zipser [Ref 8] used the same type of network to



achieve image (data) compression. Both these two application examples involved a

special form of mapping via neural networks and, thus, suggested a possible use in

cryptography. In fact, they are inspirational for the work of Chapter IV in this thesis

which explores in detail the possibility of implementing neural networks in a novel

public-key cryptosystem. In light of this, this section provides a basic understanding

of neural networks, especially the back-propagation neural network.

A formal definition of a neural network is:

"A neural network is a parallel, distributed information processing structure con-

sisting of processing elements (which can possess a local memory and can carry out

localized information processing operations) interconnected via unidirectional signal

channels called connections. Each processing element has a single output connection

that branches into as many collateral connections as desired; each carries the same

signal- the processing element ouput. This ouput signal can be of any mathematical

types. The information of each element can be arbitrary with the restriction that it

must be completely local; it must depend only on the current values of arriving input

signals at and on values in local memory. " [Ref 9]

Having defined a neural network, the basic unit, a processing element, is shown

in Figure 2.1. The processing element has many input connections combined by a

simple summation. The combination is then transformed through a transfer function.

The function of interest here is a hyperbolic tangent. The single ouput of the element

is fanned out to several ouput paths which then become inputs of other elements. The

ouput to input connections each has a corresponding weight. Since the connections

prior to entering the elements are modified by the weights, the summation within

each element is a weighted sum. The actual mathematical process within an element

is thus:

f{)^ WijXi); i = layer; j = number of weights

10



Figure 2.1: A Processing Element

An overall neural network consists of many processing elements joined together

as previously discussed. A typical neural network, a back-propagation network in

this case, is shown in Figure 2.2 [Ref 10]. For organization purpose, processing

elements are grouped into layers. A normal network is composed of two layers with

connections to the outside world: an input buffer where data is entered and an output

buffer where the response of the network to the given input is stored. Layers between

the input and ouput layers are named hidden layers [Ref 10].

There are currently many types of neural networks designed for multitude of

applications. For the purpose of encoding and decoding in a cryptosystem where the

mapping of input to output is almost always non-linear, a most suitable network is

the back-propagation type.

A back-propagation neural network is a 3 to 5 layer network that behaves as an

interpolative-associative mapping scheme. That is it has the ability to learn map-

ping by generalizing input/ouput pairs relationship [Ref 9]. Moreover, the network

employs a supervised, delta-rule learning scheme whereupon the input stimulus and

corresponding output are first presented to the system which in turn reduces the

error between the actual output of each element and the desired ouput and gradually

11
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Figure 2.2: A Back-Propagation Network [Ref 10]

configures its weights to achieve the desired input/ouput mapping. After learning is

accomplished, the error is reduced to minimum and the actual outputs of all inputs

of interest will be approximately equaled to the theoretical output [Ref 10].

Having covered the necessary basics, the mathematical background for the back-

propagation network is now provided. In order to establish a common convention,

the notations used for this development is as follows.

• Xj = current output of j
th neuron in layer s,

Wj} = connection weights joining i th neuron in layer [s-1] to j
th neuron in layer•

• /• = weight summation of inputs to j
th neuron in layer s.

The mathematical process for single back-propagation element is:

*•*' = /E^i'- 11

)] = /(/<'>)

i

12



Given that the network has some global error function £", the critical parameter

that is fed back through the layers is defined as:

ej'
1 = -dE/dlf

where e' is the local error of processing element j in layer s. Furthermore,

using the chain rule twice yields:

^=/'(^)L(4
j+,|

4r')-
k

The main mechanism in the back-propagation network is to forward the input to

the output, determine the error at the output, then propagate the errors back using

the above equations. Given knowledge of local errors, the final aim is to minimize

the global error by modifying the weights.

This is done by using the gradient rule which dictates that the weights change

in the direction of minimum error.

Au$ = -k(dE/dwW)

where k is a learning coefficient.

Again using the chain rule:

dEldw [
°} = {dEldlf){dlfldw [

$) = -e^xl
5-11

For an in-depth derivation of all forementioned equations, the reader is referred

to references 9 and 10.

Using the above equations in several iterations, an algorithm for the back-

propagation network can be developed to train the network weights in converging to

13



a given set of training data: inputs and corresponding outputs. It is not within the

scope of this research to derive or show the algorithm; however, such an algorithm

can be found in reference 9. In Chapter IV, a specific software package, Neuralware,

will be utilize to set up a back-propagation network. The network will train with

specific mapping functions so as to accomplish an encryption and decryption scheme

in a newly-proposed "pseudo" public-key cryptosystem.

This concludes the necessary background in mathematic. We are now equipped

with enough knowledge to explore the core of the public-key cryptosystem.

F. THE PUBLIC-KEY CRYPTOSYSTEM

The single foundation upon which all asymmetric cryptosystems are built is that

of the one-way function. Such a function is practical to solve in one direction but

within a range it is computationally infeasible for any algorithm to invert the solution

taken over a range of elements [Ref 11]. A formal definition of a one-way function is

beyond the scope of this study. An informal definition is that a one-way function is

one in which for / : x —> y, it is easy to find y = f(x) given x. However, given y, it

is difficult to compute x such that f(x) = y [Ref 12]. For use in cryptography, the

difficulty must be great enough so as to render the solution impractical.

Currently we have a few one-way functions which are utilized exclusively in the

public-key system. A good example of a one-way function is integer multiplication.

Whereas the multiplication of large integers is relatively easy with current technol-

ogy, the factoring of a large integer is time-consuming to the point of infeasibility.

Another important example is modular exponentiation with large exponents. As

previously discussed, fast exponentiation techniques makes the exponentiation prac-

tical. However, even with the best current algorithms and technology, the solution

of a discrete logarithmic problem of such magnitude remains unattainable within a
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reasonable time [Ref 13]. To see how the two suggested one-way functions are used

in public-key cryptosystems, in-depth studies of two systems are now provided: the

Diffie-Hellman and RSA cryptosystems.

1. The Diffie-Hellman Scheme for Public-Key Cryp-

tosystem

The first system to achieve the notoriety of a true public-key system was

proposed by Dime and Hellman seminal paper in 1976 [Ref 14]. It is in this paper

that the discrete logarithm problem was first proposed as a candidate for a one-way

function. The scheme is best summarized as follows.

Let n be a large integer and g, another integer, such that g £ {l,n — 1}.

Parties A and B establish n and g over insecure channels. A then chooses a large

integer x and computes g
x mod n while B chooses y and computes g

y mod n. Next, A

and B exchanges their perspective computations again over insecure channels without

divulging x and y. At this point A has g
y and n (possibly compromised over unsecured

channels) and x which was never communicated to anyone. Similarly, B has g
x,n

and y. A and B can construct the key as follows.

for A: key = (g
y
)

x mod n

for B: key = {g
x

)
y mod n

(g
y

)

x mod n = (g
x

)

y mod n

Clearly A and B now have the same key (g
x

)
y mod n which can be used

for any cryptography systems. Because the operation of exponentiation with large

exponent is slow, Diffie-Hellman is proposed only to make keys for faster private-key

system such as DES so that the key will not be compromised [Ref 12 ].

Even if a cryptanalyst was able to intercept the exchanges for <7, n, g
x mod n

and g
y mod n, he faces the problem of finding x and y from his known data. He must
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Figure 2.3: Block Diagram of Diffie-Hellman Cryptosystem

16



solve a discrete logarithm problem, an NP class problem, which, to date, is accepted

to be infeasible within certain time restraints [Ref 13]. A summarizing block diagram

of the Diffie-Hellman cryptosystem is provided in Figure 2.3. Moreover, an example

of its application is hereby offered.

Example [Ref 13]:

Let g = 7 and n = 2 x 739(7
149 - l)/6 + 1.

Party A chooses a secret x, compute and send lx to B.

B receives 7X=

1274021801199739468824269244334322849749382042586931621654557735290322

914679095998681860978813046595166455458144280588076766033781

Party B chooses a secret y, compute and send 7y to A.

A receives 7y=

180162285287453102444782834834836799895015967046695346697313025121734

0599537720584759581176910625380692101651848662362137934026803049

Now both A and B can compute 7xy and mod it with n to establish secret

key 7
xy mod n. Since a party other than A and B does not know either x or y in this

case, it is infeasible to attempt finding. 7
xy

.

Note: The numbers in this example are obtained from reference 13 where

neither x nor y was divulged. This author has been unable to find their values. In

the original article, a challenge of 100 dollars was offered to anyone who could solve

for x and y and thus 7ry .D

Presently, the Diffie-Hellman scheme remains trustworthy because the dis-

crete logarithm problem is still a difficult one to solve. Nevertheless, no one has
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proven beyond a doubt that it is impossible to solve. In fact, many algorithms do

exist which can derive the solution. The only setback is that even the best of them

is not fast enough with current technology. For more safety, the integers x and y can

simply be increased in magnitude and for the worst case, an establishment of new

key within an acceptable time interval can render any cryptoanalysis harmless.

2. The RSA Cryptosystem

Invented in 1978, the Rivest, Shamir and Adleman (RSA) public-key cryp-

tosystem incorporates two one-way functions: the discrete logarithm and factoriza-

tion problems. The security guaranteed by this system is so sound that since its in-

ception until present, it has been accepted as the most popular method of public-key

encryption [Ref 15]. The elegance and subtle power of the RSA system is summarized

as follows.

Party A generates 2 random primes of approximately 130 bits each, p and

q. The product pq is then computed and called n. The number of reduced residues

elements is next obtained: 4>{n) = (p — l)(g — 1) (see Table 2.1). In turn, an integer

e is generated such that gcd(e, 4>(n)) — 1. A now has the public key < e,n > which

can be published to B through insecured channels.

Having the public key, party B can encrypt a message by transforming the

message into an integer value m. m is then encrypt by:

Encryp(m) = m e mod n

In order to be able to decipher Encryp(m), A must make a private key from

<f>(n) and e. Such a key, D, is found by using Euclid's algorithm (Appendix A) so

that,

De = 1 mod <f>(n)
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Figure 2.4: Block Diagram of RSA Cryptosystem

Once D is found, the deciphering is simply done by,

Deciph(Encryp(m)) = (Encryp(m)) mod n

Proof [Ref 6]:

Given all parameters above, by Euler's Theorem:

if De = 1 mod (0) —* mDe = m mod n

- mDe mod n = m

Figure 2.4 clarifies the process. In addition, a pedagogical example of RSA

at work is shown below.
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Example:

(Use actual Appendix A programs
)

Let p = 7; q = 13 -> n = 7 x 13 = 91; 0(n) = (7 - 1)(13 - 1) = 72

Pick e = 5 and D = 29 such that De = 2<f>(n) + 1 = 145

Message m = 23

Encryp(m) - 23
5 mod 91 = 4.

Decryp{m) = 4
29 mod 91 = 23.

Judging solely on the above example, it might not seem obvious that the

RSA system is safe. The reason is because the example's numbers are small. As

stated earlier, with p and q both being about 130 bits, their product,n, can range

in excess of 160 bits. In turn, e and D are also large numbers. Given this kind of

range, to crack the code, one must face the discrete logarithm as well as factorization.

To date, the factorization of a large product of primes remains unsolvable within a

feasible time [Ref 2]. This fact is further examined in the next section, cryptoanalysis.

G. CRYPTOANALYSIS

The art of breaking cryptographic code is called cryptoanalysis. Since there are

many public-key systems, the cryptoanalysis of only the RSA system is discussed so

as to provide a flavor of how difficult it is and thereby prove its soundness.

The gist behind breaking the RSA system is the ability to solve for both the

discrete logarithm and factorization problems. The latter of the two is the most

difficult so the discrete logarithm problem will be the first to be explored.

Given the public key < e,n > and let's assume we were somehow able to factor

n and therefore know p and q. We can now use Euclid's algorithm the same way as if

the sender would to make his/her private key. Take the example in the RSA section.
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< e,n >=< 5,91 >

Knowing p and q we can compute <f>(n) = (p — l)(q — I)

Use Euclid's algorithm to find the secret key D such that

De = 1 mod <f>(n)

With D, the sender's encryption can be intercepted and decrypted by

encryp{m)D mod n

We have done the easy part. So far we assumed to know the two prime factors

of the modulo n in the public key < e,n >. The main insurance of the RSA system

is the derivation of the two factors p and q [Ref 15]. Whereas the cryptographer

only has to come up with two primes, a difficult task but not impossible with the

primes being about 130 bits, the cryptoanalyst, in order to recover the two primes to

compute 0(n), must face the grim task of factoring a number in excess of 260 digits

within a finite time limit. This leads to the topic of factorization which will also

be exploited as the safety basis for the later proposed cryptosytem based on neural

network.

1. Factorization

A factorization problem has no current classification but the consensus is

that it is neither a Polynomial (P) nor Nondeterministic Polynomial (NP)- Complete

problem [Ref 16]. It is loosely described as a Nondeterministic Polynomial Indistin-

guishable (NPI) problem [ Ref 16]. An algorithm is said to run in polynomial time

(P) if there are constants A and c such that the running time for all inputs of length
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k is Akc
for all k. All P problems are deterministic and P-time bounded. An al-

gorithm is deterministic if at each step of the computation, the next step is unique.

P-time bounded means that the execution is in polynomial time since its complexity

is bounded by a polynomial in the input length. An algorithm is said to run in

NP time if there are no known deterministic P-time solution. In NP problems, at

each step of computation, decision problems on the next step exist. To systemati-

cally solve an NP problem requires exponential time. A subset of NP problems, an

NP-complete problem surfaces when P=NP. NP-complete problems are considered

as the most difficult class in NP. An NPI problem is basically defined as having the

level of difficulty in between NP and NP-complete. Factorization, an NPI problem,

can not be solved in P-time and is not a member of NP-complete [Ref 2]

.

In order to be convinced that factorization of large numbers is at this time

insurmountable, we examine the most straightforward and therefore easiest method.

Given a number n to be factorized, we compute yjn and round it to the next integer

value, m. We then use m as the final index of a for to loop beginning with 1. In each

iteration of the loop, the operation (n mod index) is performed until the result is

notifying that an integer factor is found. Considering the speed of the computer, this

is not a bad method of factorization if n is within a certain range of digits in length.

However, this limit is what is exploited in public-key system (n is more than 130

digits in length.) The shortcoming of this method is explored using Matlab program

on an IBM '486, 50 MHz, 16 MBytes (Appendix A). The result is shown in Table

2.4. .

Undisputably, with n being at least 100 decimal bits in the RSA system, the

method above, although possible, is hardly feasible if exhaustive search is required.

Fortunately, the mathematics of factoring have long surpassed the simplicity

of the forementioned method. Currently there are established algorithms as well as
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Digits factorized Aprroximate time

10 less than Imsec

15 1.5sec

20 Ibmin

25 2Shr

30 3yr *

40 3000 centuries *

* Esitimate

TABLE 2.4: EXHAUSTIVE FACTORIZATION WITH ONE '486 COMPUTER

on-going researches which could reduce the time factor at a phenomenal rate.

As a result of a concerted effort initiated in 1982, the mathematics de-

partment at Sandia National Laboratory established some tangible bounds on the

computational feasibility of factoring large numbers. The outcome, using a Cray

X-MP computer, was within a range of 7.2 minutes to 32 hours for numbers varying

from 55 to 77 digits in length [Ref 17].

In a separate study by Ronald Rivest [Ref 15], it is proven that with the

best algorithm available such as that of a quadratic sieve [Ref 18], a large prime

composite integer can be factored with a running time proportional to:

e
y/ln(n)ln(ln(n))

In the range of interest(approximately 256 bits in length), for k bit number

n, a crude approximation is:

5 x 10
9+<*/5O >

Using Sandia's benchmark that a 75-digit number can be factored in about

1 day [Ref 17] and the formula of Rivest's article [Ref 15], Table 2.5 is derived [Ref

17]..

Based on the data above, it is safe to surmise that the problem of factor-

ization of large number will remain insurmountable for a long time given current
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Number of digits

75

100

125

150

175

200

Number of operations

9 x 10
12

2 x 10
15

3 x 10
17

3 x 10
19

2 x 10
21

1 x 1023

Solution time

1 day

255 days

103 years

9755 years

70 thousand years

36 million years

TABLE 2.5: FACTORIZATION TIME WITH SANDIA'S BENCHMARK [REF 17]

knowledge and technology. The exploitation of this problem in the RSA system and

the neural network-based system of Chapter IV is hereby justified.
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III. HARDWARE DEVELOPMENT OF THE
PUBLIC-KEY CRYPTOSYSTEM

The feasibility of most popular public-key systems is heavily dependent upon

the possibility of hardware implementation. Although the algorithm is theoretically

simple, its software implementation is slow and highly limited to the resolution of

the processor. Such problems are not worth tackling when, with the available VLSI

technology, hardware implementation is faster and more efficient.

The crux of many public-key cryptosystems hardware rests on the ability to

devise a fast exponentiation scheme where the exponent and modulus are extreme in

length (greater than 256 bits). From our two sample cryptosystems, Diffie-Hellman

and RSA, the fast exponentiation problem is essential in putting the theory to prac-

tice. To familiarize the reader with the possibility for hardware implementation of

existing public-key cryptosystems, this chapter will develop in detail a hardware

scheme for fast exponentiation based the recursive sum of residues algorithm.

A. MODULO EXPONENTIATION USING RECURSIVE
SUM OF RESIDUES

Currently the most popular working hardware for the RSA system performs

exponentiation by repeated squaring operations coupled with conditional multipli-

cation. During each square or multiplication stage, modulo reduction is also incor-

porated so as to maintain a small intermediate result [Ref 19]. The combination of

squaring (considered as part of multiplication), multiplication and modulo reduction

operations forms the core of fast exponentiation. Currently, there are two categories

separating the various methods of implementations:
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Figure 3.1: Block Diagram of over all exponentiation unit

1. Multiplication and modulo reduction are done in tandem. As the partial prod-

ucts are formed, a decision based on special algorithms is made on whether to

perform a reduction on the product [Ref 19].

2. Multiplication and modulo reduction are done sequentially. The result of the

multiplication is first obtained and then fed serially to the modulo reduction

unit [Ref 19].

For the purpose of this thesis, only the latter case (2) is considered. The under-

lying reason behind this choice is simplicity which leads to a modular structure that

in turn can easily be implemented in VLSI. Moreover, the first part of this hardware

scheme, a serial multiplier, will not be delved into with details due to the abundance

of such units already available. This leads us to focus on the hardware implementa-

tion of the modulo reduction unit to which the result of the serial multiplier is fed

into in accordance to the basic block diagram of Figure 3.1 [Ref 19].

26



1. Sum of Residues Reduction

Our modulo reduction unit is based on the sum-of-residues reduction

method. That is the number, x, reduced by modulus, m, is expressed in the fol-

lowing binary form:

x = ^xt

-2*'-1
; si » [0,1]

t=i

The modulo reduction is

n

x mod m = (^Px^1-1
) mod m

Since modulo reduction is associative

n

x mod m = (y] x t
(2'

_1 mod m)) mod m
t=i

Summarizing, one performs the reduction as a conditional power of 2 re-

duced by mod m (a residue) and a summation of all the resulting residues (hence

sum of residues) [Ref 19].

Example:

modulus mis7, x = 10010 = 18,i initialized to 1.

Residues are at 2 1 and 2
4 due to positions of 1 in 10010. Respectively the

residues are 2 mod 7 and 16 mod 7 which are 2 and 2. Hence J2 r,;
= ri -fr4 = 2 + 2 =

4.

Table 3.1 summarizes the SOR process for the example which resulted in:

(5j r,) mod 7 = 4 mod 7 = 4

Indeed 18 mod 7 = 4

Given a modulus, residues can be obtained by a look-up table; however,

this requires excessive space. Given n as the modulus length, a typical table size is n
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shift x LSB First X residue 2* * mod 7 = resulting residue

X 2° mod 7 = 1 =
1 X 21 mod 7 = 2 = 2

X 22 mod 7 = 4 =
X 2

3 mod 7 = 1 =
1 X 2

4 mod 7 = 2 = 2

• . . residues will repeat £ resulting

. . 124124... residues = 4

• . pattern

TABLE 3.1: EXAMPLE SUM OF RESIDUES FOR 18 mod 7

iteration 2rt_, m

2 x 1 - 7 <
2x2-7<0
2x4-7>0
2 x l-7<0

ri = 2r,_! or 2r,-_ 1
— m

7*! initialized to 1

2x1 = 2

2x2 = 4

2x4-7=1
2x1 = 2

TABLE 3.2: EXAMPLE RECURSIVE SOR FOR 18 mod 7

by 2n. With n being greater than 256 bits, this would require extremely large data

paths, undesirable in silicon implementation [Ref 19]. For this reason, it would be

more desirable to calculate the residues as necessary in accordance with the given

modulus. Fortunately, there is a simple recursive formula which allows for easy

hardware calculation of residues:

ith residues = r,-; i = 2...n

. _ / 2rt-! iff {2n-t - m < 0)
1 "

I 2fY_, - m iff (2rt_! - m > 0)

j*! initialized to 1 [Ref 19]

Taking the previous example from Table 3.1 and incorporating into it the
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Figure 3.2: Modulo Reduction Unit

recursive sum of residues method, the result of which is in Table 3.2, indeed the

residues are the iterative pattern: 1,2,4,1,2,4,1...

A diagram of an architecture using the sum of residues method for modulo

reduction is provided in Figure 3.2 [Ref 19] .

Respectively, M and R are two n-bit registers holding (—m), the two's

complement of the modulus, and r,, the current residue. Initially, the current residue

is set to 1. As the system is clocked, the register is loaded with 2r, or 2r< — m,

depending on the sign bit of the 2r, — m add. The accumulator sums those residues

which are passed by the incoming bits of the serial multiplier's product P. There's

an overhead amount of bits which must be taken into acount for the accumulator's

size. The necessary overhead bits are given in Figure 3.3 [Ref 19).

Having a sound understanding of the theory behind the architecture in

Figure 3.2, the next obstacle that must be cleared is the transformation of the theory

to an actual VLSI layout. With some intuition and basic knowledge of logic circuit, a

block diagram complete with logic units, inputs and outputs is developed and shown
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in Figure 3.4.

A few details in the transformation between Figures 3.2 and 3.4 are hereby

stated for clarification. Whereas in Figure 3.2 a multiplier was used to obtain the

correct residue for the accumulator, in the final design, a multiplexer is chosen to

perform the multiplication. Also the left shift logical to obtain 2r, is finalized without

a shift register but rather by hardwiring the outputs of the residues directly to the

inputs of the first adder.

From a VLSI perspective of Figure 3.4, one sees that it is beneficial to devise

a modular unit (shaded region) which could easily be assembled together to form a

larger complete reduction unit satisfying the length of the modulus. To realize a

single modular unit, only 2 master-slave flip flop's (MSFF), 2 combinational adders

and 2 2:1 multiplexers are needed. The control for this unit alone and for the rest of

the modular reduction device is a couple of simple two-phase clocks. The simplicity

of this modular scheme is attractive. However, the cost is in silicon area and speed

as we will see.
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Input Output

Figure 3.5: MSFF Circuit Diagram

B. VLSI LAYOUT DEVELOPMENT

1. Master Slave Flip Flop

The desire for a simple control method, a two-phase clock, necessitates the

use of a master-slave flip flop instead of a direct latch. In the first stage where

the residues 'are computed, the adder uses the output of the flip flop (slave) while

the output of the hardwired shift left 2r, is transferred to the input end of the flip

flop( master). The same requirements for the flip flop are imposed in the accumulator

unit where the flip flop must act as both the accumulator's adder output register

(master) as well as accumulated input to the adder.

The chosen circuit for our master-slave flip flop is shown in Figure 3.5 [Ref

20].

Analysis of Figure 3.5 shows two cascading 2-phase static latch. This struc-

ture is sound and efficient to implement. A minor problem of clock race is possible

when clock is high and clockbar overlaps it causing a tendency for the input and feed-

back signal to contest with the new value on the flip flop input [Ref 20]. Fortunately,

for our purpose, this problem did not manifest itself as the feedback transistor is

designed to "trickle": transistor is low [Ref 20]. The VLSI layout for the master-
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Figure 3.6: MSFF Layout

slave flip flop is given in Figure 3.6. It should be preempted that the design will

be slightly alter later on in order to conform to the overall modularity of the entire

modulo reduction unit.

Silicon space for the MSFF is 64 x 135 /xm2
. SPICE analysis [Ref 21] on the

layout determined a delay from input to output to be 10ns. The maximum speed

of operation for the MSFF is lOOMhz. Since the input and output of the MSFF is

inherent only to the single module, no effect from the other modules are of concern.

2. Adder

Due to the modularity of the design, the simplest approach is taken in the

development of the two adders in the module. The chosen unit for both adders is

a combinational adder with approximately equal sum and carry delays. Carries are

allowed to ripple through the necessary modules. This choice is made mainly to

conform to the modular structure. The ripple carry design does cost much in speed.

The circuit diagram for the adder is shown in Figure 3.7 [Ref 20]. The appropriate
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Figure 3.7: Adder Circuit
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Figure 3.8: Adder Layout

layout follows in. Figure 3.8.

The adder layout sizes up to 73 x 145 //m 2
. SPICE analysis Ref 21] of a single

adder unit showed that the sum and carry delays are 4.8ns and 4.5ns respectively.

From this result, intuition dictates that when the unit is put together for a larger

modulus, the carrychain will be the limiting parameter for speed of operation.
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3. Multiplexer

The reduction unit calls for the use of two 2:1 mux's per bit of modulus.

The first takes its select input from the sign bit of the sum of the first adder and

output 2ri or 2r,- — m as appropriate. The second simply acts as a multiplier with

its select input as the single bit shifted in from the output of the serial multiplier

and outputs the residues if the select is 1 and if select is 0. In short it acts as a

single bit multiplier. For our multiplexer, a function block design is used [Ref 22].

The circuit is shown in Figure 3.9 [Ref 22].

This is an NMOS device in which only one of the two inputs a, b is passed to

the output depending on whether NMOS-1 or NMOS-2 is turned on. Only one NMOS

gate can turn on at the time because the inputs to their gates are complements.

Intuitively, the select input of the multiplexer is the input to the two gates. The

VLSI layout is shown in Figure 3.10.

Because of the simplicity of the circuit, the only delay is one transistor

gate. Compared to the delay of the adder or flip flop, this is negligible and will not

be delved into. The size of the layout is 32 x 33 y.m2
.
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4. Modulo Reduction Unit

Having all the necessary components, the entire modulo reduction unit can

now be developed. As previously mentioned, a "modular" design is implemented

in this thesis so that, depending on the size of the modulus, the entire unit can be

constructed by simply cascading the same module together n times (modulus is n-bit

in length.) Bearing this in mind, the layout for the module as well as a 4-bit modulus

modulo reduction unit is shown in Figure 3.11.

The foremost significance of the VLSI scheme for the modulo reduction unit

is that it is simple in implementation and, above all, it works. Using a CFL program

[Ref 3], the module can easily be generated into an n bit unit. Experimentally, RNL

simulations were performed [Ref 3]. The results, which are enclosed in Appendix

B, testify strongly on behalf of the unit's functional capability. However, as to the

efficiency in area and speed, the empirical data is debatable in support of different

individual's needs.

Since the modulo reduction unit is designed mainly for modularity, the size

of the entire structure grows geometrically with the number of bit that the unit is

designed for. Each module per bit is sized at 73 x 672 fim
2

. If n is the number of

bits required to be modulo reduced, then n modules are needed. Disregarding the
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Figure 3.11: Layout of 4-bit Modulo Reduction Unit
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Figure 3.13: Speed Performance of Modulo Reduction Unit From SPICE

minimal effect of overhead bits (Figure 3.3), the size of a modulo reduction unit for

n-bit modulus is n x 49056/im2
. Figure 3.12 is a plot relating the size of the unit to

the number of bits.

In regard to speed consideration, experimental data found the unit's car-

rychain to be the limiting factor. After SPICE simulation [Ref 21], Figure 3.13 was

obtained to gauge the speed performance of the modulo reduction unit.
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Since the carrychain imposes the speed limit in this design, intuitively, one

can incorporate speed saving techniques such as various carry-look-ahead adders;

however, this will alter the modularity structure. This is beyond the scope of the

thesis but remains a viable avenue for speed improvement at the expense of silicon

space.

In summary, this chapter has provided the basic hardware building blocks

for a fast exponentiation scheme with specific details on a modulo reduction unit.

From this foundation, an RSA hardware implementation can easily be conceived.

Such an implementation is necessary in many applications, one of which is the subject

of the next chapter: a novel approach to PKS using neural networks. As will be

explained in the following chapter, the hardware technology developed here will be a

small integral part of a "pseudo" public-key cryptosystem based on neural networks.
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IV. A NEURAL NETWORK-BASED
PUBLIC-KEY CRYPTOSYSTEM

Since all cryptosystems make use of some form of mapping functions to trans-

form data to unintelligible code and then recover it, a neural network - inherently

an excellent non-linear mapping technique - provides a viable choice for a medium

from which a possible cryptosystem can be based upon. In examining this possibil-

ity, this chapter presents an adaptation of the back-propagation neural network to

a "pseudo" public-key arrangement. Strictly as an initial research, a simple require-

ment of encrypting and decrypting a number representing any character or data is

fulfilled via the network. Following examinations of the network, a key management

system is then devised. As data are fed to the network in simulation of encrypting

and decrypting, the problems and solutions to the system are discussed. Finally,

a complete top-down block diagram of an entire cryptosystem based on the neural

network of this study is proposed.

A. EXPERIMENTS IMPLEMENTING A NEURAL NET-
WORK IN CRYPTOSYSTEMS

The neural network-based cryptosystem to be designed, a cipher system, re-

quires two basic elements: a key management scheme and an algorithm for two-way

mapping a set of numbers representing data. In this respect, it is fundamentally

not far different than other cryptosystems. The differences surface only in the im-

plementation of mapping. Whereas all existing system such as DES [Ref 23], once

implemented in hardware, maps in a set pattern, a neural network can change its

mapping any time by simply retraining its weights to new data. As it turns out, this
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deviation from the norm is advantageous since it adds an extra level of protection.

Namely, if the system is compromised, retraining and obtainment of new weights are

neither a difficult nor time-consuming task [Ref 24, 25].

Before the network is presented, some background is in order. The system

of this study is designed to map up to a set of 45 characters for encryption and

decryption. Figure 4.1 is a block diagram of the system. From Figure 4.2 [Ref 26],

the two networks for encryption and decryption are identical systems; they are both

back-propagation networks composed of 4 inputs, 1 output, and three hidden layers

of various sizes.

Prior to proceeding with the explanations of Figure 4.1, it is stressed that this

system is based mainly on the RSA system. As such, it simply takes a number,

encrypts it to another number and decrypts it back. Like RSA, this is all the neural

network is set up to do. For simplicity, this number represents a particular character;

however, the relationship between the number and character is not explored in detail

because this is a subject outside of the focus of this thesis. Furthermore, the input to

the network of this research is only 16 bit in length. Again this is chosen for simplicity

and clarity in an example system. It is not chosen for security. Like RSA in which

system security rests on the key being numbers greater than 256 bit, the security of

this system also depends upon the range of the input being greater than 256 bit. In

fact, with the input being only 16 bit long, the system can be compromised within

nanoseconds. However, successful cryptoanalysis of 256-bit inputs will be shown in

Section 4.D.1 to take trillion of milleniums. So in order to apply this system to real-

world application, it is preempted that the input range should be increased and the

assignment of a number to character be done separately so as to maximize security.

To clarify Figures 4.1 and 4.2, in order to encrypt, a 16-bit number representing

a character is partitioned into 4 segments so as to provide the 4 4-bit inputs to the
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Figure 4.1: Neural Network As A Cryptosystem Block Diagram
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encryption network, the output of which is a single 16-bit number different than that

of the original input. These 4 4-bit inputs along with their corresponding 16-bit

output are first fed to the network to train the weights. Once trained, the weights of

the encryption unit would have converged to values such that when these converged

weights are set as constants, the same 4 4-bit inputs used for training will provide

an actual output that can be rounded to the desired output used in training. For

example, if the desired output is 1256 then the actual output must be between 1255.5

and 1256.5 so that rounding to the nearest integer would yield 1256.

Naturally, for a system encrypting up to 45 separate characters, the correspond-

ing training sets will be 45 input/ouput pairs. Basically, this is how the network is

trained and utilized for encryption. It should be noted that whether the input/output

pairs are linearly related or not, the weights should converge and accommodate the

required mapping function.

For decryption, the same type of network, training and mapping scheme will

be used, only this time the recovery of the original data is essential. Intuitively, the
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input of the decryption unit is the 16-bit output of the encryption network. To keep

the structures of the encryption and decryption networks identical, the encryption

output must be partitioned into 4 4-bit segments before it becomes inputs to be

decrypted. The desired output of the decryption network must then be the original

16 bit input of the encryption network. To clarify the process, the following example

is offered.

Example A:

Given a single processing element with 4 inputs and one output.

The element's function is /(£) = H5

The four input x's= [1 2 A 6]i6 ; output=12599 = 313716

The four converged encryption weights are found to be [77 1056 501 900] such

that

1(77) + 2(1056) + 10(501) + 6(900) = 12599.

The encryption weights are thus : [77 1056 501 900].

Since the encrypted output is 3137i6 , the decryption input is [3 1 3 7]i6

The four converged decryption weights are found to be [290 66 997 121] such

that

3(290) + 1(66) + 3(997) + 7(121) = 4774 = 12A616 .

The decryption weights are thus : 290 66 997 121.

Based on the example, a training set of several encryption and corresponding

decryption numbers can be randomly picked to represent any character. A typical

training set for 28 characters, the upper case alphabet with comma and space, is

shown in Table 4.1.
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Encryption = «= Decryption
Text Character Hex Rep Dec Rep — «— Encrypted Character Hex Rep Dec Rep

A 12AC 04780 R 321C 12828

B 134E 04942 N 981B 38939

C 214B 08523 P A235 41525

D 2698 09880 S 425A 16986

E 35B7 13751 Q 6533 25907

F 538A 21386 A159 41305

G 6942 26946 L 8731 34609

H 661B 26139 D 2698 09880

I 728D 29325 M 9137 37175

J 7546 30022 H 661B 26139

K 811A 33050 B 134E 04942

L 8731 34609 J 7546 30022

M 9137 37175 C 214B 08523

N 981B 38939 F 538A 21386

A159 41305 A 12AC 04780

P A235 41525 G 6942 26946

Q 6533 25907 K 811A 33050
R 321C 12828 I 728D 29325

S 425A 16986 E 35B7 13751

T B366 45926 Z F553 62803
U B129 45353 Y EA54 59988
V C568 50536 space OBCA 03018
w D346 54086 U B129 45353
X D351 54097 W D346 54086
Y EA54 59988 V C568 50536
Z F553 62803 comma 092D 02445
space OBCA 03018 X D351 54097
comma 098D 02445 T B366 45926

TABLE 4.1: EXAMPLE TRAINING SET
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Notably, the assignment scheme of Table 4.1 is monoalphabetic. This is chosen

strictly for simplicity, not security. The focus of of the neural network is to map a

number to another then recover it. How the number might represent a character is

entirely another subject in cryptography. In light of this, using training sets similar

to Table 4.1, experiments were next conducted to support the proposed theory of

using neural networks for a cryptosystem.

B. EXPERIMENTAL RESULTS AND OBSERVATIONS

In order to accommodate the mapping scheme for the proposed cryptosystem,

a series of experiments designed to gauge the performance of the back-propagation

network were carried out. The primary goal of the experiments is the development of

an optimal network based on several parameters. Information such as training time,

error tolerance, range of input numbers, network sizes and their interdependence

are of primary interest in building a working example network for the cryptosystem.

In accomplishing the desired goal, the chosen back-propagation network consists of

4 inputs, 1 output and 3 hidden layers of various sizes. The network is built and

simulated using the Neuralware software package [Ref 26] implemented in an IBM

'486, 50MHz, 16 Mbytes.

Table 4.2 provides the first set of results which are intended to show the re-

lationship between convergence error and training time. For the experiment, a set

of 45 training input/output pairs (45 characters of NTP) along with 4 bit per in-

put (16 bit overall since there are 4 inputs) were used. Error is measured in root

mean squared values (RMS), a common statistical method of error estimation which

is employed by Neuralware. Training time is compared by number of iterations, a

method of measurement used in Neuralware. It should be noted that time of iter-

ations varies for different networks. The larger the network, the time per iteration
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Number of Elements Iterations — RMS Error Iterations —

*

RMS Error

per Hidden Layer

5 2500 0.6 250000 0.5

10 73000 0.0025 300000 0.002

15 70000 0.002 350000 0.00006

20 124500 0.0005 270500 0.0001

25 115570 0.000085 340000 0.000017

TABLE 4.2: TRAINING TIME VS ERROR RELATIONSHIP

increases proportionally.

Conclusions drawn from Table 4.2 concern primarily training time and error.

Comparing the error with iterations to the error, one noted that up to the first set

of iterations, the errors decreased significantly for all networks. After this, the error

goes down significantly less even for a greater increase in iterations. This shows

that after a certain barrier, training of all networks follows the law of diminishing

return wherein the error decreases minimally despite greater increase in training time.

Eventually, when the error has reached its minimum, no amount of training time will

help. This behavior is typical of all neural networks [Ref 24, 25]. After this first

observation, another set of experiments were run and their results are summarized

in Table 4.3. For this experiment, the iterations to convergence were set to 3.5 x 105

iterations where it was determined that the error was at its minimum for all tested

networks (weights have converged to optimal values). The inputs again are 4 bit each

and 45 input/output pairs were used as training sets.

Clearly from Table 4.3, given the same set of input/ouput, the larger network

results in the least error at final convergence. This is due to the larger amount of

processing elements and weights (memory) available to accommodate the necessary

mapping patterns.

The final experiment intends to formulate the interdependence between network
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Elements/hidden layer RMS error

5 0.2109

10 7.835 x lO"4

15 3.0836 x 10~5

20 2.492 x 10"5

25 1.684 x 10"5

TABLE 4.3: RELATIONSHIP BETWEEN NETWORK SIZE AND ERROR

size, iterations to convergence, and input size. The results are depicted in Figure 4.3.

The conclusions which can be drawn from Figure 4.3 are:

• In regards to the range of inputs, as the number of bits per input increases,

the training time increases. Theoretically, this trend can be attributed to the

weights having to accommodate mappings of larger number to smaller ones as

well as the reverse. Namely, as a set of small and large inputs maps to larger

and smaller outputs respectively, the weights have to be small as well as large

if there are not enough weights. This may lead to non-convergence as they can

not be both. This is seen in the extremely high increase in training time with

the smaller size networks. As the network grows, there are more weights to

map thus there is less strain on the system causing training time to decrease.

• In regards to the number of input/output pairs to be mapped, as the training

pairs increased to 45 (number of characters in NTP set), the iterations to con-

vergence also increased. This is easily explained by an analogy to the human

brain which is the structure emulated by neural networks. When there is more

information to learn, the brain labors to maximum capacity until its cells are de-

pleted. In the case of neural networks, as the size of the network is exceeded by

the information memory" demands, the iterations increase with approximately

no learning. A barrier is reached until more neurons are available.
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• In regards to the size of the network, the relationship to input/output as well

as range of inputs are already described in observations of Table 4.2 and 4.3.

One more observation is added here in that as network size is enlarged for more

training input or input size, the training time increased. Mathematically this

makes sense since there are more weights and neurons (memory) to update.

Each iteration now takes longer to complete.

After thorough exploration of empirical data, the final conclusion is that there

exists a network for the proposed cryptosystem. And it works. After several trials,

the optimal network for this paper's system is found to consist of a 4 bit per input,

4 inputs, 1 output, 3 hidden layers, 25 elements per hidden layer, with 45 sets of

input/output traing pairs. This specific network is used in a conclusive example in

the next section.

C. AN IN-DEPTH EXAMPLE

This example is based on Table 4.1 which in turn is based on the Naval Tacti-

cal Publication coding scheme wherein a character is mapped unto another: A<-+R,

B«-*N... This scheme is chosen for clarity in that an encrypted text will also be a

string of characters. In reality, however, since the characters are coded by a num-

ber, the encrypted text need not be a number representing another character. For

instance, character 'A' encrypts to 5BCF\q where 5BCFi6 in this case does not

represent a character in Table 4.1.

This example employs a monoalphabetic substitution scheme to assign a number

to a character. In this respect, this system is vulnerable to single-letter frequency

analysis and is therefore easy to break [Ref 27] . However, if each character is coded

by multiple numbers utilizing schemes such as homophonic or polyalphabetic sub-

stitution (Beale or Vignere and Beaufort cipher), the safety margin would greatly
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increase [Ref 27]. Additionally, for real-world application, the input range must be

raised from 16 bit to greater than 256 bit.

As stated in the previous section, this system, based on RSA, is concerned only

with two-way mapping a number to another. Bearing this in mind, this section is

intended only as a pedagogical example of how such a scheme could be implemented

so as to be able to actually encrypt and decrypt a plaintext message. In reality,

for complete security, a separate scheme of assigning numbers to characters must

be- chosen to defeat the frequency of letters in plaintext. If interested, the reader is

referred to reference 27 for the assignment of numbers to characters. Moreover, the

range of the network's input must be greater than 256 bit. Having established the

objective of this example, illustrations of the system is hereby offered. The following

plaintext message is encrypted and decrypted using the system of Figure 4.1.

Plaintext: FIND ME COMPLETE CHAOS AND I WILL SHOW YOU SCI-

ENCE

Decimal coded text and encrypted text:

F I I D ME C

I I I I II I

Plaintext : 21386 1 2932S 1 38939 1 09880 1 03018 1 37175 1 13751 1 03018 1 08523

1

Encrypted text : 41305 1 37175 1 21386 1 16986 1 54097 1 08523 1 25907 1 54097 1 41525

1

I I I I I . I I I IOMFSXCqXP0MPLETE CHAOS
I I I I I I I I I I I I

41305 1 37175 1 41525 I 34609 1 13751 1 45926 1 13751 1 03018 1 08523 1 26139 1 04780 1 41305 I 16986
04780 I 08523 I 26946 I 30022 1 25907 1 62803 1 25907 1 54097 1 41525 1 09880 1 12828 I 04780 113751

I II I I I I I I | | | |ACGJQZqXPORAE
A H D I WILLIII I I I I I

03018 1 04780 1 38939 1 09880 1 030181 29325 1 03818 1 54086 1 29325 1 34609 1 34609 I 03818

1

54097 1 12828 1 21386 1 16986 1 54097 1 37175 I 54097 1 45353 I 37175 1 30022 1 30022 1 54097

1

I I I I I I I I I I I IXRFSXMXUNJJX
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SHOW YOU
I I I I III

16986 1 26139 1 4130S 1 54086 1 03818 1 59988 1 41305 1 45353 1 03818

1

13751 1 09880 I 04780 1 45353 1 54097 1 50536 I 04780 1 59988 1 54097

1

I I I I I I I I IEDAUXVAYX
S C I E I C E

I I I I I I I

16986 1 08523 1 29325 1 13751 1 38939 1 08523 1 13751

13751 1 41525 1 37175 1 25907 1 21386 1 41525 1 25907

I I I I I I I

e p m q f p q

Resulting encrypted text:

OMFSXCQXPACGJQZqXPDRAEXRFSXMXUMJJXEDAUXVAYXEPMQFPQ

Additionally, given the monoalphabetic scheme chosen here, in order to guard

against the problem of frequent repetition in the english vocabulary such as the word

the, double patterns //, nn, tt which can simplify cryptoanalysis, random or strate-

gically placed noise can be added to the encryption via some algorithm. Remember

that since one is using only 28 numbers out of 2 16 here, there are multitudes of num-

bers left to insert into the above patterns as noise bytes. In this specific example,

the noise is inserted by human intuition and is shown as asterisk (*) signifying any

number not used in coding the characters.

An example of encrypted text with noise inserted:

QMFS*XCqX*PACG*jqZ*qXQDR*AEX*RFSXMXU*MJ**JXE*DAUXV*AYXEPM*QFPQ

With the noise option, one must have a scheme to filter the noise out prior

to entering the decryption network. The decryption network simply recover the

plaintext from the encrypted text as previously discussed. Both the encryption and

decryption networks is subjected to the following parameters:
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• Momentum coefficient = 0.300.

• Learning coefficient = 0.500.

• Function = Tanh.

• Learning rule = Delta-rule.

• Size = 4 inputs, 1 output, 3 hidden layers, 25 elements/layer.

• The time to minimum acceptable error was approximately 8 hours.

The two networks' (encryption and decryption) data employed for this example

are included in Appendix C.

Clearly, the basis of how to encrypt and decrypt via a neural network is es-

tablished. Based on knowledge of cryptography, the concept of a key must now be

incorporated.

D. KEY MANAGEMENT

Up until present, the method of mapping has been discussed without any men-

tioning of a key. In reality, the key evolves from the actual training process. Namely,

once the training is done, both for encryption and decryption, the converged weights

are the keys. Since different training sets are used (inverse sets), a key for encryption

and another for decryption are required. The keys will change when the network

switch mapping function via new training sets.

For our example of only one training input/ouput pair and one processing el-

ement in Section A (Example A), the keys are [77 1056 501 900] for encryption and

[290 66 997 121] for decryption. The fact that two keys must exist is perhaps clearer

now with the example; however, the fact that this is a one-way scheme only remains

murky. Let's clarify this further. For a specific set of encryption/decryption key that
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party A obtains from training, party B given the encryption key, can encrypt while

A can decrypt using decryption key. Unless B somehow also obtain the decryption

key (the only safe way to do this is through a secured channel) there is no way for A

to encrypt to B unless B had come up with separate encrypt/decrypt keys of his own

and sent A the encryption key. There is no restriction against both parties using the

same encryption/decryption keys that only one has derived, provided the system is

a secret-key type where the keys can be distributed through safe channels. In this

respect, there is little to gain from a neural network as it is nothing more than an-

other mapping method. But there is much more to the versatility of neural network

which should be exploited.

In the key management scheme thus far mentioned, only one party needs to

train the network and then passes the weights as keys for encrypt and decrypt to his

or her counterpart. However, if both parties were to obtain separate training sets

and thus keys, only the encryption keys need to be exchanged. In this respect, there

exists a "pseudo" public-key scheme which can be exploited since the decryption key

requires no exchange. This possibility is hereby explored.

1. A Proposed Pseudo Public-Key Cryptosystem Using
A Neural Network

Irrefutably in cryptography, the possibility of a pseudo-public-key imple-

mentation of a neural network merits this paper further examination. Currently,

the designed networks mentioned that the keys, the encryption/decryption weights,

can be passed through a secured channel. If a cryptoanalyst has the keys and the

same network, he has broken all codes. Now the assumption is lifted. This research

postulates that if both parties develop their own set of keys, the encryption keys can

be exchanged through any public channel( Figure 4.1). A cryptoanalyst having pos-
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session of the encryption key, a network, and encrypted data will face an enormous

obstacle in breaking the code: time (in terms of centuries.)

From the forementioned implementation, one recalls that only the encryp-

tion key needs to be exchanged if both parties train on separate data and each obtains

his or her own keys. The decryption key is never divulged. Given the encryption

key Eencr and the encrypted message Y a cryptoanalyst must solve an excessively

difficult equation to recover the original input X.

Example D:

Using data from our simple one element one input/output training Example A.

Known to the attacker: Encrypt key (Eencr) and encrypted code.

E,ner =

77

1056

501

900

encrypted data=3137ie

To solve for the original data, he must solve

llxi + 1056x2 + 501x3 + 900x4 = 3137i6

with x,- being 4 bit,

which is one equation and four unknown.

The above example is done on a simple single processing element model with

a simple linear function. Given a multilayer network such as the back-propagation

type with non-linear processing elements, even if the attacker knows the network, the

problem mathematically increases in difficulty since the number of elements grows

and thus the amount of required factorizations grows.

Even with a simple one cell example, for a crude cryptoanalysis method, one

must solve the equation -by trying 2 16 combination of inputs to break one character.
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Using a crude equation for Table 4.4:

Time in seconds = 2
Numberofbit9loops(10~9 sec computer/loop) lOOOcomputers

Number of input bits per x,- Time

4 (this report's element)

8

16

32

0.07 ns

4.3 ms
213 days

1.08 x 10
17 centuries

64 3.67 x 1055 centuries

TABLE 4.4: EXHAUSTIVE SEARCH CRYPTOANALYSIS TIME FOR A SINGLE
CELL

On the average it will take less then all combinations as it is probable that the

solution can come anywhere in the search. An exhaustive search of 216 loops for 216

combinations poses little problem with the power of the computer but let's say one

increases the same simple single layer input and output to a 32 -bit, 64-bit , 128-bit,

or 256-bit input. Herein lies the basis behind the security of this system: a large

range for the input of the network. Whereas up until now, only 16-bit inputs were

used in a simple example, when this range is increased to 256 bit, the difficulty of

working with such a large number renders any cryptoanalysis infeasible. Using an

exhaustive search, Table 4.4 shows the amount of total possible time it would take

to break one character given 1000 computers operating at 1 ns per loop operation (a

very generous, fast time).

As with all cryptosystems, the time above can be minimized further if the

system is susceptible to the problem of predictable frequency in the vocabulary.

Namely, when the number representing trends such as 'the', 'a', space, double letters

'11', 'nn' exists, estimation of those characters are made easier. With this system,

there exists a countermeasure in that one could use numbers not mapped to inject

noise into the transmission thus breaking up any patterns. Here, since only 45 num-

bers are needed to represent 45 characters, there are 2 16 — 45 random numbers left
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to be used by some algorithm which would insert them into common words such as

those mentioned above. This possibility was shown earlier in the in-depth example

of Section C.

With the multi-element structure of the back-propagation network, the

cryptoanalysis problem is exponentially greater with increase in number of network

elements. Undoubtedly, the insurmountable time can be decreased given the luck

factor in the probabilities and in due time further development in mathematics can

solve in feasible time the NP complete problem. Nevertheless, at this date, the

postulate is made that this is a very safe public-key cryptosystem.

2. Justification of the "Pseudo" Prefix

Ironically, the restrictions which necessitate the prefix "pseudo" for the

system arise from the same attributes that make the system safe. Given a range of

bits of input x, one cannot use all the possible combinations to train the network.

For example, if each x was 64 bits long, one faces 24x64 = 2
256 possible combinations.

In order to encrypt anything between and 2
256

, all 2
256 numbers must be matched

to a unique y and trained to the network. This is comparable to the problem of the

cryptoanalyst; it would take trillions of milleniums - not feasible.

The solution to this problem is avoidance. One needs only to train a certain

range of number corresponding to the number of characters needed to be encrypted.

For the NTP character set in this proposed system, one needs only a range of 45

out of numbers 2
16

possible. However, both the encrypter and decrypter must know

this range. How is this range to be kept a secret and still be passed to both parties?

In order to make this neural network completely public-key, another PKS system is

required to pass this range. It is suggested that the already popular Rivest Shamir

Adleman (RSA) PKS system mentioned in Chapter II and III be used to pass this
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range.

In summary, key management involves the direct public disclosure of the

encryption weights and the indirect public disclosure of the range of inputs via the

RSA system. This leads to the question of why not use RSA completely and not be

bothered with the neural network. The answer is that RSA is traditionally slower

compared to neural networks (after training) and since the range of numbers used in

encryption/decryption needs to be exchange only once prior to utilizing the system,

one can afford to use RSA whereas for text encryption a drawn-out repetitive real-

time process, a neural network is much more efficient [Ref 12, 24].

E. PROBLEMS OF A NEURAL NETWORK AS A CRYP-
TOSYSTEM AND PROPOSED SOLUTIONS

The two potentially detrimental problems with the neural network scheme are

that of the network weights not converging to an acceptable error for some non-

linear training sets (non-convergence) and the mapping not guaranteed to be one to

one (aliasing). Fortunately, the intrinsic versatility of neural networks is such that

solutions to these problems exist.

The more serious of the two problems, non-convergence, can be easily illustrated

by referring back to the one processing cell, one input/output training set example.

With simply one cell, an addition of a second input/ouput pair - if not linearly

related to the first pair - can cause the cell weights not to converge to acceptable

errors; namely, there are no possible set of weights which will accommodate the

correct outputs for both inputs. For example, the input/ouput pair [2 1 B 6]i6 and

[0 E F 3] i6 is added to example 4. A. Using the old convergence weight for the original

input/output, the actual output of the second pair is:

2(77) + 1(1056) + 11(501) + 6(900) = 12, 121 = 2£5916 .
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Clearly this is not the desired output for the second input. Hence, if one was to

use the two data set above to train the single cell, the weights would not converge.

One is then left with some restriction as to how to choose training set (mapping func-

tion). This restriction, can be easily exploited by a cryptoanalyst to break the system

as he or she now knows that only certain mapping function is possible given knowl-

edge of the system. Luckily, this restriction can be lifted with the back-propagation

network used in this research.

As previously mentioned in Section A, a back-propagation network is an excel-

lent mapping method of non-linear functions. Relying on this property, the training

sets for encryption and decryption do not need to be linearly related. The more cells

one adds to the network, the more non-linear functions can be mapped. Theoreti-

cally, with enough cells per layers, the weights will converge to acceptable errors given

just any training data [Ref 24]. For the non-convergence example above, indeed the

back-propagation network did prove to be the solution.

Additionally for public-key cryptography, one must bear in mind that the train-

ing data for encryption and decryption are related. For it to work, the weights of both

encryption and decryption networks must converge. A training set that converges for

encryption but its inverse training set does not yield converged weights for the decryp-

tion network is otherwise of no use in cryptography. From experimental data of the

proposed 45 character encryption/decryption scheme, using the back-propagation

system, problems of convergence were sometimes encountered. The reader is referred

back to the experimental Section B where it was shown that when non-convergence

does surface, the solution is to add more cells.

Apart from non-convergence, the second problem, aliasing, proved less serious

but still needed to be dealt with. Aliasing occurs when, given a converged weights,

two or more sets of inputs map to the same output. This nuisance can be attributed

59



to the same problem which necessitated the "pseudo" prefix. Since one trains only

a range of inputs within the vast possibility (> 2
256

), the unused inputs could by

chance map to one of the same chosen outputs.

Example E:

Again reverting back to the one cell, one input/output training set of Example A in

Section A, an input of [1 2 A 6]ie along with encryption weights of [77 1056 501 900]

yielded an encrypted code of 12599 = 3137i6 .

Let's use an input of [7 1 4 A] 16 and the same converged weights. The encrypted

code for this input will be

7(77) + 1(1056) + 4(501) + 10(900) = 12599 = 313716 ,

which is the same output with the original input; hence aliasing has occured.

Clearly aliasing is a theoretical possibility and thus a problem; however, in real-

ity it can be easily be avoided by making sure one uses only the trained input/output

pairs for encryption and decryption. This way, one knows exactly that a given en-

cryption output should map back to the desired encryption input during decryption

and not the aliased value. In fact, the alias problem can be exploited to the system's

advantage. If certain aliasing problems are adapted intentionally, cryptoanalysis be-

comes more difficult. As previously explained in the "pseudo" justification section,

only the desired parties knows the range of inputs to use whereas others do not. It

is essential only to choose exact one-to-one mapping pairs in this range to avoid

aliasing. Outside this range, any other inputs can have the aliasing effect, an actual

benefit in extra safety.
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F. DEVELOPMENT OF A COMPLETE BLOCK-DIAGRAM
LEVEL HARDWARE SCHEME USING A NEURAL NET-
WORK IN PKS

Up until now, most of the basic building blocks of a PKS using neural network

have been discussed. Gathering all the essential blocks together, a possible block

diagram proposal for an entire cryptosystem is shown in Figure 4.4.

Block by block description of Figure 4.4.

• The only component not yet delved into is the automatic generator of training

input/ouput sets. This function can be fulfilled by a linear feedback shift

register (LFSR). Given an input polynomial, it is a simple circuit capable of

generating a random set of different numbers given. For this study, an LFSR of

order 16 is necessary to generate 2 16 — 1 random numbers for both input/output

pairs of encryption. For further insights on LFSR's, consult reference 28. After

the input/ouput training sets of encryption is established by the LFSR, the

decryption input/ouput training sets must be the inverse; namely ouput and

input of encryption become input and input of decryption, respectively.

• Decrypt/encrypt neural net- Both networks are of the back-propagation type

composed of 4 inputs , 1 ouput, 3 hidden layers with 25 elements per layer.

• Input Range Exchange- As discussed in Section D.2, the RSA hardware of

Chapter III can be used to send the range thus making this a "pseudo" PKS.

• Network Weights- The weights of the neural networks must be able to undergo

changes during training and then be set to constants once the the converged

weights are obtained via training or received from opposite parties. Simple

• latches and switches seem adequate for the task although no detail studies are

made.
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A working model of a public-key cryptosystem based on neural networks has

been designed. It is merely a sample model which can be applied in limited usage;

however, the idea behind the system deserves recognition as a worthwhile alternative

to PKS.
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V. CONCLUSION

This thesis has presented some novel approaches to public-key cryptosystems.

The focus was centered on a specific hardware implementation and a completely

new angle to PKS using neural networks. In both issues, research produced working

models when simulated by computers.

The hardware implementation for a modulo reduction unit in a fast exponentia-

tor - an essential device in the most popular PKS, RSA cryptosystem - was developed

based on the sum-of-residues method (SOR). The design is based on the concept

of modularity. The modular unit can be conveniently connected to form a fast ex-

ponentiator for numbers of any length. The result is a working VLSI layout when

simulated by RNL (Appendix C). The efficiency in speed and size, though offered in

the study, remains issues to be considered when the unit is to be used in real-world

applications. If the speed and size given hereby are acceptable to a certain applica-

tion then this unit is perhaps a viable alternative to existing technology due to its

advantage in modularity.

The second part of this thesis involves the use of neural networks in PKS. To

the author's knowledge, the attempt to integrate neural networks into cryptography

is a novel idea. Whether it is either original or even revolutionary remains to be seen.

That the goal is at all plausible is an unanticipated surprise when the experimental

results confirmed it so. This is not to say that plausibility means practicality. So far,

all that is proven is that the concept works. Whether the scheme is feasible needs

further research.
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From data gathered in Tables 2.4 and 4.4, one can conclude that at 256 bit

in length for the key in RSA and input in the neural network-based cryptosystem,

exhaustive cryptoanalysis faces infeasible time limit. For all practical purpose, re-

quiring trillion of milleniums to break, the system of this thesis is as safe as any

current PKS (Table 4.4). Additionally, the most significant advantage in using neu-

ral networks in PKS is that there is no need for fast exponentiation which has proven

to be slow for large exponents and modulus [Ref 2] . The only necessary operations

in a back-propagation network are multiplication, addition and hyperbolic tangent

(or other non-linear functions.) The computational feasibility of the neural network

scheme, however, is not explored here and is left to follow-on research.

At present, the example system only applies for input ranging 16 bit in length.

For the system to be secured, it is suggested that the range be extended to 256 bit.

Intuitively, if one single network is to be used to map numbers with 256 bit range,

it will have to be large and thus will slow down the system. However, if parallel

processing is available and one can afford to design a 256 bit cryptosystem based on

16 16-bit neural networks, the results of this paper will be of value. Furthermore,

only the back-propagation network was used in this research. Given the multitudes

of network types in various applications, there may exist other schemes capable of

using other networks.

This paper is intended to pioneer the idea of neural network in cryptosystem.

As such it claims only the initiative in a novel avenue to cryptography. The proposed

theory of employing neural networks in cryptography now ends with a call for further

research into the efficiency, speed and possibilities of more capable networks. The

key to the knowledge gathered so far is that a new method is postulated and there

seems to be some merit in that it works with some restrictions. These restrictions

may be lifted by further investigation or perhaps there shall come a disproval which
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may destroy the entire scheme altogether. Be that as it may, time constraint dictates

that this introductory study terminates with many aspirations of fueling follow-on

research in this subject.
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APPENDIX A

SUPPLEMENTARY PROGRAMS

The following programs axe provided to supplement background knowledge in

public-key cryptography. In order, they are: fast exponentiation, greatest common

divisor, inverse, and factorization. The first three programs are written in C [Ref

2] and run on Unix while factorization is in Matlab code and ran on an IBM '486,

50MHz, 16MB.

/*

This program uses the fast exponential algorithm to compute the operation:

a~z mod n. It is intended as an example of software implementation of the

RSA public key cryptosystem. */

#include <stdio.h>

/* The algorithm is contained in the following function to be called when

necessary. */

int fastexp(a, z, n)

int a, z, n;

{

int x 1

;

while (z)
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{

while (!(z 7. 2))

i

z /= 2;

a = ((a7.n)*(a 7. n)) 7.n;

>

z—

;

x - ((x 7. n)*(a 7. n)) 7. n;

}

return (x)

;

}

main()

{

int a, z, n, t;

printf ("a"z(mod n) . Enter a, z, n ")

;

scanf("7.d 7.d 7.d0" ,4a,4z,to)

;

t» fastexp( a, z, n) ;

printf ("Result = 7.d\n" , t );

}

*********************•+ + ******* + ******** +********************

/*

This program uses Euclid's algorithm to solve for the greatest common

denominator (gcd) of two number. Given two input integers, a and n, this

program provides their mutual gcd. This is intended to be an example for
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generating keys in the RSA public key system */

include <stdio.h>

main()

{

int gClOO]; /* Initialize an array for gcd */

int i«i;

printf ("gcd of a,n. Enter a,n separated by space:");

scanf ("7.d '/.dO", ftg[0], &g[l]);

while (g[i])

{

gCi+1] - gCi-1] % gCi];

i++;

}

printf ("gcd of %d and */.d is 7.d \n" ,g[0] ,g[l] ,g[i-l]) ;

s

>

/* This program compute the inverse, x, of a and n (0<a<n) such that

ax (mod n) = 1 */

include <stdio.h>

mainO

int g[l00], u[100], v[100]; /* Initialize arrays for indexing */
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int i=l; /* Beginning index # of loop */

int y,n,a; /* Defining input and intermediate var. */

printf ("inverse of a,n. Enter a,n separated by space: ")

;

scanf ("7.d 7,d0", &a, An); /* Read in a and n */

g[0]» n;

g[l]= a;

u[0] = v[l] = 1;

u[l] = v[0] » 0;

while (g[i])

{

gCi]" u[i] * n + v[i] * a;

y- gCi-i]/gCi];

gCi+l] » g[i-l] - y*g[i];

u[i+l] = u[i-l] - y*u[i];

v[i+l] = v[i-l] - y*v[i]
;

i++;

} /* Using extension of Euclid's gcd algo */

if (vCi-1] <= 0)

{

printf ("inv of 7.d and 7.d is 7,d \n", a,n,v[i-l]+n)
;

}

else

{
!

printf ("inv of '/.d and 7.d is 7.d \n",a,n,v[i-l]+2*n)
;

}

}
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7* This is a Matlab program designed to factorize a product of two

7% primes for the cryptoanalys is of the RSA public-key cryptosystem.

*/. Intended merely to show the futility of factorizing large numbers,

'/, it employs a naive exhaustive search method of dividing and

7* checking the remainder of the division of the product and every

7* possible odd numbers until a factor is found. To use the program,

7* simply type rsafac( 'product of 2 primes').

function[x]»rsafac(z)

;

% Enter the product.

w=round(sqrt(z)) ; */, Factor can not be larger than

7. the square root of the product

.

for n3 l:2:w % No need to test even numbers, and

7, limit of search is w.

v=z/n; 7, Testing by dividing products by

7* odd numbers

.

if (rem(v,l)==0) '/. If v is integer then

x=[n,v]; 7% n and v are factors.

n=w; 7, Exit loop once factors are found

end

end
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APPENDIX B

RNL SIMULATION OF MODULO
REDUCTION UNIT

The following examples are indicative of the successful RNL simulation [Ref 3]

of the final modulo reduction unit. The unit simulated here is limited to modulo

numbes of 4-bit length. The RNL control file, stimulation file for one example are

included along with simulation results of 5 modulo operations.

Sample control file for RNL simulation of 5 mod 7 using modulo reduction

layout of .Figure 3.11.

; The name of this control file for rnl is: modl.l

; Simulation for modulo reduction unit of Chapter 3.

; LOAD STANDARD LIBRARY ROUTINES

(load "uvstd.l")

(load "uvsim.l")

; FILE WHICH WILL LOG THE RESULTS

(log-file "modl.rlog")

; READ IN THE BINARY NETWORK FILE

(read-network "modi")

; DEFINE THE TIME SCALE FOR SIMULATION

(setq incr 90)

; DEFINE INPUT VECTOR IF ANY, standard STYLE

(defvec '(bit state s3 s2 si sO ))
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; DEFINE INPUT VECTOR IF ANY, SINGLE INDEX STYLE

; DEFINE INPUT VECTOR IF ANY, double index STYLE

; STANDARD REPORT FORMAT DEFINITION.

(def-report ' ("response= " ell cl2 in i3 i2 il (vec state)))

; PLOTFILE SPECIFIED

openplot "modi. ben"

; LOGIC ANALYZER STYLE OUTPUT FORMAT SELECTION.

(setq lanalyze t)

(wr-format)

; GLITCH DETECTOR SELECTION.

(setq glitch-detect t)

; NODE TRANSIENTS REPORT DEFINITION.

(chflag '( s3 s2 si sO))

; TRIGGER CONDITION SET-UP

; ADDITIONAL SIMULATION SET-UP COMMAND LINES.

(printf "Commence simulation. . An")

; SPECIFICATION OF A TIME/BASENAME FILE FOR INCLUSION.

(load "modi. time")

; ADDITIONAL WRAP-UP COMMAND LINES.

(printf "...completed simulation !\n")

exit

; GEN-CONTROL COMPLETED.

;The following is the stimulation file for the input to the rnl simulation

; above for 5 mod 7.

Sample < >.stim file for 5 mod 7:
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time_range 10

in h 1 2 h 4 ; Note 101 is entered for 5

inn 1 h 2 1 4 ; Simply inverse of in

ell 2 1 h 1 ; 2-phase clocks

clln 2 h 1 1

cl2 2 h 1 1

cl2n 2 1 h 1

opt h x 1 ; Initializing MUX select

optn 10x1

mO h ; 2's complement of 7 is 1001

ml 1 ; Modulo number inputs

m2 1

m3 h

s3 1 x 1 ; Initializing summer

s2 1 x 1

si 1 x 1

sO 1 x 1

i3 1 x 1 ; Initializing 1st residue to 1

i2 1 x 1

il h x 1
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report 1

*************************************************************

The following is the RNL simulation result of stimulation file above

5 mod 7 :

118 nodes, transistors: enh=68 intrinsic=0 p-chan=56 dep=0

low-poweraO pullup»0 resistor»0

Report format of logic analyzer style output

time ell cl2 in i3 i2 il state (result)

* **

Commence simulation. .

.

9 1 1 1 0000

18 1 1 1 0001 - 1st elk pulse

27 1 1 0001

36 1 1 0001 - 2nd elk pulse

45 1 1 1 0001

54 1 1 1 0101 - 3rd elk pulse ***

63 1 1 1 0101

. . .completed simulation!

* Input is .101= 5 (Note input taken at each rising clock edge.)

** Residues are 1,2,4,1,2,4... for mod 7.

*** 5 mod 7 = 0101» 5.

t**********************************************************************
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The following is a second RNL simulation result (10 mod 6)

118 nodes, transistors: enh=68 intrinsic=0 p-chan=56

dep=0 lov-power=0 pullup=0 resistor=0

Report format of logic analyzer style output

time ell cl2 in

*

i3 i2 il state (result)

Commence simulation

9 1 1 0000

18 1 1 0000 - 1st elk pulse

27 1 1 1 0000

36 1 1 1 0010 - 2nd elk pulse

45 1 1 0010

54 1 1 0010 - 3rd elk pulse

63 1 1 1 0010

72 1 1 1 0100 - 4th elk pulse ***

. . .completed simulation!

* Input is 1010= 10.

** Residues are 1,2,4... for mod 7.

*** 10 mod 6 = 0100= 6.

*******************************************************************

; Third RNL simulation using 10 mod 7:

; 118 nodes, transistors: enh=68 intrinsie=0 p-chan=56

; dep=0 low-power=0 pullup=0 resistor=0
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; Report format of logic analyzer style output

time ell cl2 in i3 i2 il

**

state (result)

Commence simulation

9 1 1 0000

18 1 1 0000 - 1st elk pulse

27 1 1 1 0000

36 1 1 1 0010 - 2nd elk pulse

45 1 1 0010

54 1 1 0010 - 3rd elk pulse

63 1 1 1 0010

72 1 1 1 0011 - 4th elk pulse ***

...completed simulation!

* Input is 1010» 10.

** Residues for mod 7 is 1,2,4,1,2,4...

**10 mod 7= 0011 = 3.

; Fourth RNL simulation using 11 mod 6.

; 118 nodes, transistors: enh=68 intrinsic=0 p-chan=56

; dep=0 low-power=0 pullup=0 resistor=0

; Report format of logic analyzer style output

time ell cl2 in i3 i2 il state(result)

* **

Commence simulation...
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9 1 1 1 0000

18 1 1 1 0001 - 1st elk pulse

27 1 1 1 0001

36 1 1 1 0011 - 2nd elk pulse

45 1 1 0011

54 1 1 0011 - 3rd elk pulse

63 1 1 1 0011

72 1 1 1 0101 - 4th elk pulse***

81 1 1 1 0101

. . .completed simulation!

* input is 1011= 11.

** Residues of mod 6 axe 1,2,4,2,4...

*** 11 mod 6= 0101= 5

************************************************************

Fifth RNL simulation with 17 mod 5

118 nodes, transistors: enh=68 intrinsic=0 p-chan=56

dep=0 low-power=0 pullup=0 resistor=0

Report format of logic analyzer style output

time ell cl2 in

*

Commence simulation.

9 1 1

18 1 1

i3 i2 il state(result)

**

1

1

0000

0001 - 1st elk pulse
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27 1 1 0001

36 1 1 0001 - 2nd elk pulse

45 1 1 0001

54 1 1 0001 - 3rd elk pulse

63 1 1 1 0001

72 1 1 1 0001 - 4th elk pulse

81 1 1 1 0001

90 1 1 1 0010 - 5th elk pulse***

99 1 1 1 0010

...completed simulation!

* Input is 10001* 17.

** Residues of mod 5 are 1,2,4,3,1,2,4,3...

*** 17 mod 5=0010 » 2.
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APPENDIX C

SAMPLE NEURAL NETWORK FROM
NEURALWARE

The following is data for the encryption and decryption neural network used in

Chapter IV in-depth example. The network data is formatted from Neuralware [Ref

26] "annotated" option once convergence is reached. This option piovides all the

necessary parameters to reconstruct the network trained by data from Table 4.1. Of

the many parameters, those of interest are learning iterations (375642 for encryption

and 333877 for decryption), error function ( standard = hyperbolic tangent), learning

rule (delta-rule), and the processing elements' data. Of the element's data, the error

for each element's output was approximately zero once convergence is reached. The

weight data are not included other than the number of weights going to each element.

The reason for this omission is that it is not pertinent. With the data offered here

and Table 4.1, one can reconstruct the encryption and decryption network using

Neuralware.

Title: Encryption Network for In—Depth Example

r °ifPi?7 *ode: Network Type: Hetero-AssociativeControl Strategy: backprop L/R Schedule: bacxprop
Recall
Aux 2

Layer
Aux 3

375642 Learn
16 Aux 1

L/R Schedule: backprop
Recall Step 1

Firing Density 100.0000
Gain 1.0000
Gain 1.0000

Learn Step 5000
Coefficient 1 0.9000
Coefficient 2 0.6000
Coefficient 3 0.0000

10 Parameters
Learn Data: File Rand. (Encryption file here) BinaryRecall Data: File Seq. (Encryption file here)
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Desired Output, Output
userio

-1.0000,
-0.8000,

1

2

1.0000
11

Wgt Fields:
F' offset:

3

0000
12

Low Limit: -9999.00
High Limit: 9999.00
Init High: 0.100

Result File:
UserIO Program:

I/P Ranges:
O/P Ranges:

I/P Start Col:
0/P Start Col:

MinMax Table <sama>:
Col: 1
Min: 0.0000
Max: 15
Layer : 1

PEs: 1 Wgt Fields: 2

Spacing: 5 F' offset: 0.00
Shape : Square
Scale: 1.00

Offset: 0.00
Init Low: -0.100
Winner 1: None
PE: Bias

1.000 Err Factor
0.000 Sum

Weights
Layer : In

PEs: 4
Spacing : 5

Shape : Square
Scale: 1.00 Low Limit: -9999.00

Offset: 0.00 High Limit: 9999.00
Init Low: -0.100 Init High: 0.100

Winner 1-:- None
PE: 2

1.000 Err Factor
-0.867 Sum

*** Weights 0.000 Error
*** From here on all error for all PE's are 0's

PE: 3

1.0000
0.8000

MinMax Table: sama
Number of Entries: 5

4

0000
14

2445.0000
6.28e+004

Sum: Sum
Trans fer : Linear

Output : Direct
Error Func: standard

Learn : —None—
L/R Schedule: (Network)

Winner 2: Ncne

0.000 Desired
1.000 Transfer

-291.920 Error
1.000 Output

0.000 Current Error

Wgt Fields: 1
F' offset: 0.00

Sum: Sum
Transfer: Linear

Output : Direct
Error Func: standard

Learn : —None

—

L/R Schedule: (Network)
Winner 2: None

-0.867 Desired
-0.867 Transfer

-0.800 Desired
-0.800 Transfer

0.636 Desired
0.636 Transfer

0.692 Desired
0.692 Transfer

1.000 Err Factor
-0.800 Sum

PE: 4

1.000 Err Factor
0.636 Sum

PE: 5

1.000 Err Factor
0.692 Sum

Layer: Hidden

1

PES: 25
Spacing: 5

Shape : Square
Scale: 1.00 Low Limit: -9999.00

Offset: 0.00 High Limit: 9999.00
Init Low: -0.100 Init High: 0.100
Winner 1: None

L/R Schedule: hiddenl
Recall Step 1

Firing Density 100.0000 0.0000
Gain 1.0000 0.0000

-0.867 Output
000 Current Error

-0.800 Output

0.636 Output

Wgt Fields:
F* offset:

2

0.00

0.692 Output

Sum: Sum
Transfer: TanH

Output: Direct
Error Func: standard

Learn: Delta-Rule
L/R Schedule: hiddenl

Winner 2 : None

0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
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Gain 1.0000 0.0000 0.0000
Learn Step 10000 30000 70000

Coefficient 1 0.3000 0.1800 0.0648
Coefficient 2 0.3000 0.1800 0.0648
Coefficient 3 0.1000 0.1000 0.1000

PE: 6

1.000 Err Factor 0.000 Desired
0.044 Sum 0.044 Transfer

*** 5 Weights 0.000 Error
*** From here on all weights are 5 and errors

PE: 7

0.0000
150000
0.0084
0.0084
0.1000

0.0000
310000
0.0001
0.0001
0.1000

1.000 Err Factor
0.612 Sum

PE: 8
1.000 Err Factor

-0.123 Sum
PE: 9

1.000 Err Factor
0.500 Sum

PE: 10
1.000 Err Factor

-1.634 Sum
PE: 11

1.000 Err Factor
-0.069 Sum

PE: 12
1.000 Err Factor
0.145 Sum

PE: 13
1.000 Err Factor

-0.008 Sum
PE: 14

1.000 Err Factor
-0.305 Sum

PE: 15
1.000 Err Factor

-0.045 Sum
PE: 16

1.000 Err Factor
-0.376 Sum

PE: 17
1.000 Err Factor

-0.037 Sum
PE: 18

1.000 Err Factor
-2.242 Sum

PE: 19
1.000 Err Factor
0.023 Sum

PE: 20
1.000 Err Factor
0.228 Sum

PE: 21
1.000 Err Factor

-2.312 Sum
PE: 22

0.000 Desired
0.546 Transfer

0.000 Desired
-0.123 Transfer

0.000 Desired
0.462 Transfer

0.000 Desired
-0.927 Transfer

0.000 Desired
-0.069 Transfer

0.000 Desired
0.144 Transfer

0.000 Desired
-0.008 Transfer

0.000 Desired
-0.296 Transfer

0.000 Desired
-0.045 Transfer

0.000 Desired
-0.359 Transfer

0.000 Desired
-0.037 Transfer

0.000 Desired
-0.978' Transfer

0.000 Desired
0.023 Transfer

0.000 Desired
0.224 Transfer

0.000 Desired
-0.981 Transfer

0.044 Output
000 Current Error
are 0.

0.546 Output

-0.123 Output

0.462 Output

-0.927 Output

-0.069 Output

0.144 Output

-0.008 Output

-0.296 Output

-0.045 Output

-0.359 Output

-0.037 Output

-0.978 Output

0.023 Output

0.224 Output

-0.981 Output

82



PE:

PE;

PE:

1.000 Err Factor 0.000 Desired
1.274 Sum 0.855 Transfer
23
1.000 Err Factor 0.000 Desired
0.031 Sum 0.031 Transfer
24
1.000 Err Factor 0.000 Desired
0.029 Sum 0.029 Transfer
25
1.000 Err Factor 0.000 Desired
0.816 Sum 0.673 Transfer

0.855 Output

0.031 Output

0.029 Output

0.673 Output
PE: 26

0.000 Desired
-0.279 Transfer

PE

PE:

PE:

0.000 Desired
-0.290 Transfer

0.000 Desired
0.929 Transfer

0.

0.

000 Desired
712 Transfer

000 Desired
414 Transfer

00

1.000 Err Factor
-0.286 Sum

PE: 27
1.000 Err Factor

-0.299 Sum
28
1.000 Err Factor
1.650 Sum
29
1.000 Err Factor
0.891 Sum
30
1.000 Err Factor
0.440 Sum

Layer: Hidden

2

PEs: 25 Wgt Fields
Spacing: 5 F' offset

Shape : Square
Scale: 1.00 Low Limit: -9999.00

Offset: 0.00 High Limit: 9999.00
Init Low: -0.100 Init High: 0.100
Winner 1: None

L/R Schedule: hidden2
Recall Step

Firing Density
Gain
Gain

Learn Step
Coefficient
Coefficient
Coefficient

PE: 31
1.000 Err Factor 0.000 Desired
0.221 Sum 0.218 Transfer 0.218 Output

***26 Weights -0.000 Error -0.000 Current Error
*** From here on all PE's have 26 weights, approximately error,

PE: 32
. 000 Desired

-0.279 Output

-0.290 Output

0.929 Output

0.712 Output

0.414 Output

Sum: Sum
Transfer: TanH
Output : Direct

Error Func: standard
Learn : Delta-Rule

L/R Schedule: hidden

2

Winner 2: None

1
ty 100.0000 0.0000 0.0000 0.0000 0.0000

1.0000 0.0000 0.0000 0.0000 0.0000
1.0000 0.0000 0.0000 0.0000 0.0000
10000 30000 70000 150000 310000

l 0.2500 0.1500 0.0540 0.0070 0.0001
2 0.3000 0.1800 0.0648 0.0084 0.0001
3 0.1000 0.1000 0.1000 0.1000 0.1000

1.000 Err Factor
-1.459 Sum

PE: 33
1.000 Err Factor

-2.230 Sum
PE: 34

1.000 Err Factor

-0.897 Transfer

0.000 Desired
-0.977 Transfer

0.000 Desired

-0.897 Output

-0.977 Output
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-0.-297 Sum -0.288 Transfer -0. 288 Output
PE: 35

1.000 Err Factor 0.000 Desired
-0.168 Sum -0.167 Transfer -0. 167 Output

PE: 36
1.000 Err Factor 0.000 Desired
0.315 Sum 0.305 Transfer 0. 305 Output

PE: 37
1.000 Err Factor 0.000 Desired
1.152 Sum 0.818 Transfer 0.,818 Output

PE: 38
1.000 Err Factor 0.000 Desired
-0.165 Sum -0.164 Transfer -0,,164 Output

PE: 39
1.000 Err Factor 0.000 Desired

-1.256 Sum -0.850 Transfer -0,.850 Output
PE: 40

1.000 Err Factor 0.000 Desired
-0.520 Sum -0.477 Transfer -0,.477 Output

PE: 41
1.000 Err Factor 0.000 Desired

-1.282 Sum -0.857 Transfer -0 .857 Output
PE: 42

1.000 Err Factor 0.000 Desired
2.801 Sum 0.993 Transfer. .993 Output

PE: 43
1.000 Err Factor

•

0.000 Desired
0.082 Sum 0.081 Transfer .081 Output

PE: 44
1.000 Err Factor 0.000 Desired

-2.658 Sum -0.990 Transfer -0 .990 Output
PE: 45

1.000 Err Factor 0.000 Desired
4.263 Sum 1.000 Transfer 1 .000 Output

PE: 46
1.000 Err Factor 0.000 Desired

-0.159 Sum -0.158 Transfer -0 .158 Output
PE: 47

1.000 Err Factor 0.000 Desired
-0.068 Sum -0.068 Transfer -o,.068 Output

PE: 48
1.000 Err Factor 0.000 Desired

-0.707 Sum -0.609 Transfer -0,.609 Output
PE: 49

1.000 Err Factor 0.000 Desired
-0.527 Sum -0.483 Transfer -0,,483 Output

PE: 50
1.000 Err Factor 0.000 Desired

-3.316 Sum -0.997 Transfer -0.,997 Output
PE: 51

1.000 Err Factor 0.000 Desired
-1.019 Sum -0.770 Transfer -0,.770 Output

PE: 52
1.000 Err Factor 0.000 Desired

PE:
0.934
53

Sum 0.733 Transfer 0.,733 Output
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000 Desired
992 Transfer

000 Desired
017 Transfer

1.000 Err Factor 0.000 Desired
-0.033 Sum -0.033 Transfer

PE: 54
1.000 Err Factor

-2.768 Sum -0

PE: 55
1.000 Err Factor
0.017 Sum

Layer*. Hidden

3

PES: 25 Wgt Fields: 2

Spacing: 5 F' offset: 0.00
Shape : Square

Scale: 1.00 Low Limit: -9999.00
Offset: 0.00 High Limit: 9999.00
Init Low: -0.100 Init High: 0.100
Winner 1: None

L/R Schedule: hidden

3

-0.033 Output

-0.992 Output

0.017 Output

Sum: Sum
Transfer: TanH
Output : Direct

Error Func: standard
Learn: Delta-Rule

L/R Schedule: hidden3
Winner 2: None

Recall Step 10
Firing Density 00 .0000 0.0000 0.0000 0000 0.0000
Temperature .0000 0.0000 0.0000 .0000 0.0000
Gain 1 .0000 0.0000 0.0000 .0000 0.0000
Gain 1 .0000 0.0000 0.0000 .0000 0.0000

Learn Step 10000 30000 70000 150000 310000
Coefficient 1 .2000 0.1200 0.0432 .0056 0.0001
Coefficient 2 .3000 0.1800 0.0648 .0084 0.0001
Coefficient 3 .1000 0.1000 0.1000 .1000 0.1000

PE: 56
1.000 Err Factor 0.000 Desired
0.421 Sum 0.398 Transfer 0.398 Output

PE: 57
1.000 Err Factor 0.000 Desired

-0.212 Sum -0.209 Transfer -0.209 Output
PE: 58

1.000 Err Factor 0.000 Desired
0.145 Sum 0.144 Transfer 0.144 Output

PE: 59
1.000 Err Factor 0.000 Desired

-0.139 Sum -0.138 Transfer -0.138 Output
PE: 60

1.000 Err Factor 0.000 Desired
-0.209 Sum -0.206 Transfer -0.206 Output

PE: 61
1.000 Err Factor 0.000 Desired
0.137 Sum 0.136 Transfer 0.136 Output

PE: 62
1.000 Err Factor 0.000 Desired
0.151 Sum 0.150 Transfer 0.150 Output

PE: 63
1.000 Err Factor 0.000 Desired

-0.306 Sum -0.297 Transfer -0.297 Output
PE: 64

1.000 Err Factor 0.000 Desired
0.669 Sum 0.584 Transfer 0.584 Output

PE: 65
1.000 Err Factor 0.000 Desired

-0.153 Sum -0.152 Transfer -0.152 Output
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PE: 66
1.000 Err Factor

-0.436 Sum
PE: 67

1.000 Err Factor
-0.086 Sum

PE: 68
1.000 Err Factor
0.082 Sum

PE: 69
1.000 Err Factor

-0.108 Sum
PE: 70

1.000 Err Factor
0.071 Sum

PE: 71
1.000 Err Factor
0.181 Sum

PE: 72
1.000 Err Factor
0.233 Sum

PE: 73
1.000 Err Factor

-0.244 Sum
PE: 74

1.000 Err Factor
0.378 Sum

PE: 75
1.000 Err Factor

-0.318 Sum
PE: 76

1.000 Err Factor
-0.484 Sum

PE: 77
1.000 Err Factor
0.128 Sum

PE: 78
1.000 Err Factor

-0.047 Sum
PE: 79

1.000 Err Factor
-0.379 Sum

PE: 80
1.000 Err Factor
0.647 Sum

Layer : Out
PEs: 1 Wgt Fields

Spacing: 5 F 1 offset
Shape: Square

Scale: 1.00 Low Limit: -9999.00
Offset: 0.00 High Limit: 9999.00

Init Low: -0.100 Init High: 0.100
Winner 1: None

L/R Schedule: out
Recall Step 1

Input Clamp 0.0000 0.0000

0.000 Desired
-0.410 Transfer

0.000 Desired
-0.086 Transfer

0.000 Desired
0.082 Transfer

0.000 Desired
-0.108 Transfer

0.000 Desired
0.071 Transfer

0.000 Desired
0.179 Transfer

0.000 Desired
0.229 Transfer

0.000 Desired
-0.239 Transfer

0.000 Desired
0.361 Transfer

0.000 Desired
-0.308 Transfer

0.000 Desired
-0.449 Transfer

0.000 Desired
0.127 Transfer

0.000 Desired
-0.047 Transfer

0.000 Desired
-0.361 Transfer

0.000 Desired
0.569 Transfer

2

0.00

-0.410 Output

-0.086 Output

0.082 Output

-0.108 Output

0.071 Output

0.179 Output

0.229 Output

-0.239 Output

0.361 Output

-0.308 Output

-0.449 Output

0.127 Output

-0.047 Output

-0.361 Output

0.569 Output

Sum: Sum
Transfer: TanH
Output: Direct

Error Func: standard
:Learn: Delta-Rule

L/R Schedule: out
Winner 2: None

0.0000 0.0000 0.0000
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Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000
Temperature 0.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000

Learn Step 10000 30000 70000 150000 310000
Coefficient 1 0.1500 0.0900 0.0324 0.0042 0.0001
Coefficient 2 0.3000 0.1800 0.0648 0.0084 0.0001
Coefficient 3 0.1000 0.1000 0.1000 0.1000 0.1000

PE: 81
1.000 Err Factor -0 525 Desired

-0.583 Sum -0 525 Transfer -0.525 Output
26 Weights 0.000 Error 0. 000 Current Error

*****************************************************************
Resulting actual output and desired output for encryption after
convergence in accordance with Table 4 . 1 input

:

Desired

:

12828.000000
38939.000000
41525.000000
16986.000000
25907.000000
41305.000000
34609.000000
9880.000000
37175.000000
26139.000000
4942.000000
30022.000000
8523.000000
21386.000000
4780.000000
26946.000000
33050.000000
29325.000000
13751.000000
62803.000000
59988.000000
3018.000000
45353.000000
54086.000000
50536.000000
2445.000000
54097.000000
45926.000000

Actual

:

12827.522461
38939.464844
41524.664063
16985.642188
25907.292969
41304.957031
34609.128906
9880.100586
37175.384375
26138.814453
4942.453223
30021.833984
8523.165039
21385.605469
4779.714844
26946.346094
33050.152344
29324.822266
13750.862305
62803.332031
59987.847656
3017.878906
45353.355469
54086.285156
50536.437500
2445.414014
54097.246094
45926.305469

**************************************************************
Title: Decryption Network for In—Depth Example of Chapter 4

Display Mode: Network Type: Hetero-Associative
Display Style: default

Control Strategy: backprop L/R Schedule: backprop
333877 Learn Recall Layer

16 Aux 1 Aux 2 Aux 3
L/R Schedule: backprop

Recall Step 10
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File Rand,
File Seq.

-1.0000,
-0.8000,

1

2

1.0000
11

Wgt Fields:
F' offset:

3

0000
12

00

Low Limit: -9999.00
High Limit: 9999.00
Init High: 0.100

Firing Density 100.0000 0.0000
Gain 1.0000 0.0000

Learn Step 5000
Coefficient 1 0.9000 0.0000
Coefficient 2 0.6000 0.0000
Coefficient 3 0.0000 0.0000

10 Parameters
Learn Data:
Recall Data:
Result File:

User10 Program:
I/P Ranges:
0/P Ranges:

I/P Start Col:
0/P Start Col:

MinMax Table <samb>:
Col: 1
Min: 0.0000
Max: 15
Layer : 1

PES: 1 Wgt Fields: 2

Spacing: 5 F' offset:
Shape: Square

Scale: 1.00
Offset: 0.00

Init Low: -0.100
Winner 1: None
PE: Bias

1.000 Err Factor
0.000 Sum

Weights
Layer : In

PEs:
Spacing:

Shape

:

Scale: 1.

Offset: 0.

Init Low: -0.1
Winner 1

PE: 2
1.000 Err Factor
0.333 Sum

*** Weights
*** Repeat for PE's here on, weights,

PE: 3

1.000 Err Factor
-1.000 Sum

PE: 4

1.000 Err Factor
-0.273 Sum

PE: 5

1.000 Err Factor
0.231 Sum

Layer: Hiddenl
PEs: 25 Wgt Fields: 2

Spacing: 5 F' offset: 0.00

0.0000
0.0000

0.0000
0.0000
0.0000

0.0000
0.0000

0.0000
0.0000
0.0000

0.0000
0.0000

0.0000
0.0000
0.0000

(decryption file) Binary
( decryption

)

Desired Output, Output
userio

1.0000
0.8000

MinMax Table:
Number of Entries:

samb
5

4

0000
14

2445.0000
6.28e+004

Sum: Sum
Transfer : Linear
Output : Direct

Error Func: standard
Learn : —None

—

L/R Schedule: (Network)
Winner 2: None

0.000 Desired
1.000 Transfer

-247.657 Error
1.000 Output

000 Current Error

4 Wgt Fields: 1 Sum: Sum
5 F' offset: 0.00 Transfer: Linear
Square Output : Direct
00 Low Limit: -9999.00 Error Func: standard
00 High Limit: 9999.00 Learn : —None

—

100 Init High: 0.100 L/R Schedule : ( Network

)

None Winner 2: None

0.333 Desired
0.333 Transfer

000 Error
error

-1.000 Desired
-1.000 Transfer

-0.273 Desired
-0.273 Transfer

0.231 Desired
0.231 Transfer

0.333 Output
. 000 Current Error

-1.000 Output

-0.273 Output

0.231 Output

Sum:
Transfer:

Sum
TanH
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Shape: Square
Scale: 1.00 Low Limit: -9999.

Offset: 0.00 High Limit: 9999.00
Init Low: -0.100 Init High: 0.100
Winner 1: None

L/R Schedule: hiddenl

Output: Direct
00 Error Func: standard

Learn: Delta-Rule
L/R Schedule: hiddenl

Winner 2 : None

Recall Step 1

Firing Density 100,,0000 0.0000 0.0000 0,,0000 0.0000
Gain 1.,0000 0.0000 0.0000 0,,0000 0.0000
Gain 1.,0000 0.0000 0.0000 0.,0000 0.0000

Learn Step 10000 30000 70000 150000 310000
Coefficient 1 0.,3000 0.1500 0.0375 0.,0023 0.0000
Coefficient 2 0,,3000 0.1500 0.0375 0,,0023 0.0000
Coefficient 3 0,,1000 0.1000 0.1000 0,,1000 0.1000

PE: 6

1.000 Err Factor 0.000 Desired
1.734 Sum 0.940 Transfer 0.940 Output

*** 5 Weights -0.000 Error -0. 000 Current Error
Repeat for PE's from here on, !5 weights. nearly error.

PE: 7

1.000 Err Factor 0.000 Desired
-2.111 Sum -0.971 Transfer -0.971 Output

PE: 8
1.000 Err Factor 0.000 Desired

-0.297 Sum -0.289 Transfer -0.289 Output
PE: 9

1.000 Err Factor 0.000 Desired
0.912 Sum 0.722 Transfer 0.722 Output

PE: 10
1.000 Err Factor 0.000 Desired

-0.258 Sum -0.252 Transfer -0.252 Output
PE: 11

1.000 Err Factor 0.000 Desired
-0.159 Sum -0.158 Transfer -0.158 Output

PE: 12
1.000 Err Factor 0.000 Desired
0.169 Sum 0.168 Transfer 0.168 Output

PE: 13
1.000 Err Factor 0.000 Desired

-0.342 Sum -0.330 Transfer -0.330 Output
PE: 14

1.000 Err Factor 0.000 Desired
0.677 Sum 0.589 Transfer 0.589 Output

PE: 15
1.000 Err Factor 0.000 Desired

-1.055 Sum -0.784 Transfer -0.784 Output
PE: 16

1.000 Err Factor 0.000 Desired
-0.215 Sum -0.212 Transfer -0.212 Output

PE: 17
1.000 Err Factor 0.000 Desired
1.487 Sum 0.903 Transfer 0.903 Output

PE: 18
1.000 Err Factor 0.000 Desired

-0.250 Sum -0.245 Transfer -0.245 Output
PE: 19
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1.000 Err Factor
0.158 Sum

PE: 20
1.000 Err Factor
1.666 Sum

PE: 21
1.000 Err Factor

-2.920 Sum
PE: 22

1.000 Err Factor
0.136 Sum

PE: 23

0.000 Desired
0.156 Transfer

0.000 Desired
0.931 Transfer

0.000 Desired
-0.994 Transfer

0.000 Desired
0.135 Transfer

0.000 Desired
0.117 Transfer

1.000 Err Factor
0.118 Sum

PE: 24
1.000 Err Factor

-0.597 Sum
PE: 25

1.000 Err Factor
0.154 Sum

PE: 26
1.000 Err Factor
0.203 Sum

PE: 27
1.000 Err Factor

-1.358 Sum
PE: 28

1.000 Err Factor
0.508 Sum

PE: 29
1.000 Err Factor

-1.887 Sum
PE: 30

1.000 Err Factor
0.345 Sum

Layer: Hidden

2

PES: 25 Wgt Fields: 2

Spacing: 5 F' offset: 0.00
Shape : Square

Scale: 1.00 Low Limit: -9999.00
Offset: 0.00 High Limit: 9999.00
Init Low: -0.100 Init High: 0.100
Winner 1: None

L/R Schedule: hidden

2

0.000 Desired
-0.535 Transfer

0.000 Desired
0.153 Transfer

0.000 Desired
0.201 Transfer

0.000 Desired
-0.876 Transfer

000 Desired
468 Transfer

0.000 Desired
-0.955 Transfer

0.000 Desired
0.332 Transfer

0.156 Output

0.931 Output

-0.994 Output

0.135 Output

0.117 Output

-0.535 Output

0.153 Output

0.201 Output

-0.876 Output

0.468 Output

-0.955 Output

0.332 Output

Sum: Sum
Transfer: TanH
Output : Direct

Error Func: standard
Learn : Delta-Rule

L/R Schedule: hidden2
Winner 2 : None

Recall Step 1

Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000

Learn Step 10000 30000 70000 150000 310000
Coefficient 1 0.2500 0.1250 0.0313 0.0020 0.0000
Coefficient 2 0.3000 0.1500 0.0375 0.0023 0.0000
Coefficient 3 0.1000 0.1000 0.1000 0.1000 0.1000

PE: 31
1.000 Err Factor 000 Desired

-4.909 Sum -1 000 Transfer -1.000 Output
26 Weights -0.000 Error -0. 000 Current Error
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*** Repeat for PE's here on,
PE: 32

1.000 Err Factor
-1.085 Sum

PE: 33
1.000 Err Factor
3.423 Sum

PE: 34
1.000 Err Factor
3.539 Sum

PE: 35
1.000 Err Factor
0.414 Sum

PE: 36
1.000 Err Factor

-1.275 Sum
PE: 37

1.000 Err Factor
1.820 Sum

PE: 38
1.000 Err Factor
3.687 Sum

PE: 39
1.000 Err Factor
1.271 Sum

PE: 40
1.000 Err Factor

-0.379 Sum
PE: 41

1.000 Err Factor
0.636 Sum

PE: 42
1.000 Err Factor

-0.823 Sum
PE: 43

1.000 Err Factor
0.619 Sum

PE: 44
1.000 Err Factor

-1.500 Sum
PE: 45

1.000 Err Factor
2.516 Sum

PE: 46
1.000 Err Factor
1.206 Sum

PE: 47
1.000 Err Factor
0.972 Sum

PE: 48
1.000 Err Factor
1.743 Sum

PE: 49
1.000 Err Factor

-1.517 Sum
PE: 50

26 weights, nearly error,

0.000 Desired
•0.795 Transfer

0.000 Desired
0.998 Transfer

0.000 Desired
0.998 Transfer

0.000 Desired
0.392 Transfer

0.000 Desired
0.855 Transfer

0.000 Desired
0.949 Transfer

0.000 Desired
0.999 Transfer

0.000 Desired
0.854 Transfer

0.000 Desired
-0.362 Transfer

0.000 Desired
0.563 Transfer

0.000 Desired
-0.677 Transfer

0.000 Desired
0.550 Transfer

0.000 Desired
-0.905 Transfer

0.000 Desired
0.987 Transfer

0.000 Desired
0.836 Transfer

0.000 Desired
0.750 Transfer

0.000 Desired
0.941 Transfer

0.000 Desired
-0.908 Transfer

-0.795 Output

0.998 Output

0.998 Output

0.392 Output

-0.855 Output

0.949 Output

0.999 Output

0.854 Output

-0.362 Output

0.563 Output

-0.677 Output

0.550 Output

-0.905 Output

0.987 Output

0.836 Output

0.750 Output

0.941 Output

-0.908 Output
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PE:

PE: 52

1.000 Err Factor 0.000 Desired
0.166 Sum 0.165 Transfer
51
1.000 Err Factor 0.000 Desired
0.270 Sum 0.264 Transfer

1.000 Err Factor
0.125 Sum

PE: 53
1.000 Err Factor

-1.336 Sum

0.000 Desired
0.124 Transfer

0.000 Desired
•0.871 Transfer

PE: 54
0.000 Desired

-0.744 Transfer

0.000 Desired
0.488 Transfer

1.000 Err Factor
-0.958 Sum

PE: 55
1.000 Err Factor
0.533 Sum

Layer : Hidden

3

PES: 25
Spacing: 5

Shape: Square
Scale: 1.00 Low Limit: -9999.00

Offset: 0.00 High Limit: 9999.00
Init Low: -0.100 Init High: 0.100

Winner 1: None
L/R Schedule: hidden3

0.165 Output

0.264 Output

0.124 Output

-0.871 Output

-0.744 Output

0.488 Output

Wgt Fields: 2

F' offset: 0.00
Sum: Sum

Transfer: TanH
Output : Direct

Error Func: standard
Learn : Delta-Rule

L/R Schedule: hidden3
Winner 2: None

Recall Step 1
Firing Density 100.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000
Gain 1.0000 0.0000 0.0000 0.0000 0.0000

Learn Step 10000 30000 70000 150000 310000
Coefficient 1 0.2000 0.1000 0.0250 0.0016 0.0000
Coefficient 2 0.3000 0.1500 0.0375 0.0023 0.0000
Coefficient 3 0.1000 0.1000 0.1000 0.1000 0.1000

PE: 56
1.000 Err Factor 0. 000 Desired
0.824 Sum 677 Transfer 0.677 Output

*** 26 Weights -0.000 Error -0.000 Current Error
*** Repeat for PE's here on, 26 weights, nearly error.

PE: 57
0.000 Desired
0.317 Transfer

1.000 Err Factor
0.328 Sum

PE: 58
1.000 Err Factor

-0.132 Sum
PE: 59

1.000 Err Factor
-0.035 Sum

PE: 60
1.000 Err Factor

-0.120 Sum
PE: 61

1.000 Err Factor
-0.671 Sum

PE: 62
1.000 Err Factor

0.000 Desired
-0.131 Transfer

0.000 Desired
-0.035 Transfer

0.000 Desired
-0.120 Transfer

0.000 Desired
-0.586 Transfer

0.000 Desired

0.317 Output

-0.131 Output

-0.035 Output

-0.120 Output

-0.586 Output
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-0.110 Sum -0.110 Transfer -0. 110 Output
PE: 63

1.000 Err Factor 0.000 Desired
-0.076 Sum -0.076 Transfer -0. 076 Output

PE: 64
1.000 Err Factor 0.000 Desired
0.697 Sum 0.602 Transfer 0. 602 Output

PE: 65
1.000 Err Factor 0.000 Desired
-0.083 Sum -0.083 Transfer -0. 083 Output

PE: 66
1.000 Err Factor 0.000 Desired
-0.117 Sum -0.117 Transfer -0.,117 Output

PE: 67
1.000 Err Factor 0.000 Desired
-2.059 Sum -0.968 Transfer -0.,968 Output

PE: 68
1.000 Err Factor 0.000 Desired
0.513 Sum 0.472 Transfer 0.,472 Output

PE: 69
1.000 Err Factor 0.000 Desired

-0.735 Sum -0.626 Transfer -0,,626 Output
PE: 70

1.000 Err. Factor 0.000 Desired
-0.142 Sum -0.141 Transfer -0,.141 Output

PE: 71
1.000 Err Factor 0.000 Desired
0.405 Sum 0.384 Transfer 0..384 Output

PE: 72
1.000 Err Factor 0.000 Desired
0.007 Sum 0.007 Transfer .007 Output

PE: 73
1.000 Err Factor 0.000 Desired
3.931 Sum 0.999 Transfer .999 Output

PE: 74
1.000 Err Factor 0.000 Desired
0.238 Sum 0.234 Transfer .234 Output

PE: 75
1.000 Err Factor • 0.000 Desired

-0.478 Sum -0.444 Transfer -0 .444 Output
PE: 76

1.000 Err Factor o-.ooo Desired
-0.288 Sum -0.280 Transfer -0 .280 Output

PE: 77
1.000 Err Factor 0.000 Desired
0.474 Sum 0.441 Transfer .441 Output

PE: 78
1.000 Err Factor 0.000 Desired

-8.096 Sum -1.000 Transfer -1 .000 Output
PE: 79

1.000 Err Factor 0.000 Desired
0.169 Sum 0.167 Transfer .167 Output

PE: 80
1.000 Err Factor 0.000 Desired

-0.261 Sum -0.255 Transfer -0 .255 Output
Layer

:

Out
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PES: 1 Wgt Fieldsi: 2 Sum: Sum
Spacing: 5 F' offset.: 0.00 Transfer: TanH

Shape: Square Output: Direct
Scale: 1.00 Low Limit: -9999.00 Error Func: standard

Offset: 0.00 High Limit: 9999.00 Learn: Delta-Rule
Init Low: -0.100 Init High: 0.100 L/R Schedule: out
Winner 1: None Winner 2: None

./R Schedule: out
Recall Step 1

Firing Density 100.0000 0.0000 0,.0000 0.0000 0.0000
Gain 1.0000 0.0000 0,,0000 0.0000 0.0000
Gain 1.0000 0.0000 0..0000 0.0000 0.0000

Learn Step 10000 30000 70000 150000 310000
Coefficient 1 0.1500 0.0750 0..0188 0.0012 0.0000
Coefficient 2 0.3000 0.1500 0.,0375 0.0023 0.0000
Coefficient 3 0.1000 0.1000 0.,1000 0.1000 0.1000

PE: 81
1.000 Err Factor -0. 298 Desired

-0.307 Sum -o. 298 Transfer -0.298 Output
26 Weights 0.000 Error 0. 000 Current Error

•A***************************************************************

Decryption desired and actual output after convergence
according to input of Table 4.1:

Desired:
4780.000000
4942.000000
8523.000000
9880.000000
13751.000000
21386.000000
26946.000000
26139.000000
29325.000000
30022.000000
33050.000000
34609.000000
37175.000000
38939.000000
41305.000000
41525.000000
25907.000000
12828.000000
16986.000000
45926.000000
45353.000000
50536.000000
54086.000000
54097.000000
59988.000000
62803.000000
3018.000000
2445.000000

Actual

:

4779.549316
4941.904785
8523.464258
9880.255859
13750.194336
21385.947266
26945.638672
26138.501953
29324.567578
30022.140625
33049.261719
34609.441406
37174.546875
38939.292969
41305.357031
41525.300781
25907.408984
12828.163086
16985.839844
45925.791406
45353.366406
50535.578906
54086.265625
54097.269531
59988.027344
62803.003906
3017.567871
2444.980957
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